【題目】已知關(guān)于x的方程,

1)若方程有兩個正根,求:m的取值范圍;

2)若方程有兩個正根,且一個比2大,一個比2小,求m的取值范圍.

【答案】1;(2

【解析】

1)方法一,一元二次方程有兩個正根,兩根之積、之和均取正值,用韋達定理表示,再加判別式大于等于0即可;方法二,構(gòu)造函數(shù),轉(zhuǎn)化為二次函數(shù)的根的分布問題,要結(jié)合二次函數(shù)圖象來解。由結(jié)合二次函數(shù)圖象且方程有兩個正根,可知函數(shù)圖象開口向下,故只需滿足,解不等式組即可;(2)構(gòu)造函數(shù),由結(jié)合二次函數(shù)圖象且方程有兩個正根,可知函數(shù)圖象開口向下,由方程有兩個正根,且一個比2大,一個比2小,可得,解不等式組即可。

方法一,因為方程有兩個正根,所以 ,解得。所以,m的取值范圍

方法二,令 ,因為 ,方程有兩個正根,所以函數(shù)的圖象一定開口向下,所以

,解得。所以,m的取值范圍。

2)令 ,因為 ,方程有兩個正根,所以函數(shù)的圖象一定開口向下,所以

,解得 ,所以,m的取值范圍。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Ox2y29及點C(2,1),過點C的直線l與圓O交于PQ兩點,當OPQ的面積最大時,直線l的方程為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ab,c分別為ABC三個內(nèi)角AB,C的對邊,2bcosA=acosC+ccosA

1)求角A的大。

2)若a=3,ABC的周長為8,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,已知,).

(1)求證:數(shù)列為等比數(shù)列;

(2)若數(shù)列滿足:

求數(shù)列的通項公式;

是否存在正整數(shù)n,使得成立?若存在,求出所有n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司一年需購買某種原料400噸,設公司每次都購買噸,每次運費為4萬元,一年的總存儲費用為萬元.

1)要使一年的總運費與總存儲費用之和最小,則每次購買多少噸?

2)要使一年的總運費與總存儲費用之和不超過200萬元,則每次購買量在什么范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018河北保定市上學期期末調(diào)研已知點到點的距離比到軸的距離大1

I)求點的軌跡的方程;

II)設直線 ,交軌跡兩點, 為坐標原點,試在軌跡部分上求一點,使得的面積最大,并求其最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校社團活動開展有聲有色,極大地推動了學生的全面發(fā)展,深受學生歡迎,每屆高一新生都踴躍報名加入.現(xiàn)已知高一某班60名同學中有4名男同學和2名女同學參加心理社,在這6名同學中,2名同學初中畢業(yè)于同一所學校,其余4名同學初中畢業(yè)于其他4所不同的學校.現(xiàn)從這6名同學中隨機選取2名同學代表社團參加校際交流(每名同學被選到的可能性相同).

(Ⅰ)在該班隨機選取1名同學,求該同學參加心理社團的概率;

(Ⅱ)求從6名同學中選出的2名同學代表至少有1名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a11anan1n2n≥2,nN*.

1)求數(shù)列{an}的通項公式:

2)若對任意的nN*,不等式1≤man≤5恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革方案指出:該省高考考生總成績將由語文數(shù)學英語3門統(tǒng)一高考成績和學生從思想政治、歷史、地理、物理、化學、生物6門等級性考試科目中自主選擇3個,按獲得該次考試有效成績的考生(缺考考生或未得分的考生除外)總?cè)藬?shù)的相應比例的基礎上劃分等級,位次由高到低分為A、B、C、D、E五等21級,該省的某市為了解本市萬名學生的某次選考化學成績水平,統(tǒng)計在全市范圍內(nèi)選考化學的原始成績,發(fā)現(xiàn)其成績服從正態(tài)分布 ,現(xiàn)從某校隨機抽取了名學生,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.

(1)估算該校名學生成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)現(xiàn)從該校名考生成績在的學生中隨機抽取兩人,該兩人成績排名(從高到低)在全市前名的人數(shù)記為,求隨機變量的分布列和數(shù)學期望.參考數(shù)據(jù):若,則,,.

查看答案和解析>>

同步練習冊答案