【題目】已知函數(, ),曲線在處的切線方程為.
(Ⅰ)求, 的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足的常數為.令函數(其中是自然對數的底數, ),若是的極值點,且恒成立,求實數的取值范圍.
【答案】(1), .(2)詳見解析;(3)
【解析】試題分析:
(1)由導函數與切線方程的關系可得, .
(2)利用題意構造新函數 ,結合新函數的性質即可證得 ;
(3)由題意,
當時, 無極值,不符合題意;
當時, 是函數的唯一極值點,也是它的唯一最大值點,可得 .
由題意考察函數,可得的取值范圍是.
試題解析:
(Ⅰ)的導函數,
由曲線在處的切線方程為,知, ,
所以, .
(Ⅱ)令 ,則 ,
當時, , 單調遞減;當時, , 單調遞增,
所以,當時, 取得極小值,也即最小值,該最小值為,
所以,即不等式成立.
(Ⅲ)函數(),則,
當時, ,函數在內單調遞增, 無極值,不符合題意;
當時,由,得,
結合, 在上的圖象可知,關于的方程一定有解,其解為(),且當時, , 在內單調遞增;當時, , 在內單調遞減.
則是函數的唯一極值點,也是它的唯一最大值點,
也是在上的唯一零點,即,則.
所以 .
由于恒成立,則,即,(*)
考察函數,則,
所以為內的增函數,且, ,
又常數滿足,即,
所以, 是方程的唯一根,
于是不等式(*)的解為,
又函數()為增函數,故,
所以的取值范圍是.
科目:高中數學 來源: 題型:
【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點.橢圓的長軸長是4,橢圓短軸長是1,點分別是橢圓的左焦點與右焦點.
(1)求橢圓的方程;
(2)過的直線交橢圓于點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別為棱AB、AD的中點.
(1)求證:EF平行平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
(3)求直線A1C與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓: 過圓上任意一點向軸引垂線垂足為(點、可重合),點為的中點.
(1)求的軌跡方程;
(2)若點的軌跡方程為曲線,不過原點的直線與曲線交于、兩點,滿足直線, , 的斜率依次成等比數列,求面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形, 為棱上的動點,且.
(I)求證: 為直角三角形;
(II)試確定的值,使得二面角的平面角余弦值為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發(fā)現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為 ( )
(參考數據: )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com