設(shè)常數(shù)a∈R,若(x2+
a
x
)5
的二項(xiàng)展開(kāi)式中x4項(xiàng)的系數(shù)為20,則a=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于4,求出r的值,即可求得展開(kāi)式中x4項(xiàng)的系數(shù),再根據(jù)x4項(xiàng)的系數(shù)為20,求得a的值.
解答: 解:∵(x2+
a
x
)5
的二項(xiàng)展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
5
•ar•x10-3r,
令10-3r=4,求得 r=2,
故二項(xiàng)展開(kāi)式中x4項(xiàng)的系數(shù)為
C
2
5
•a2=20,解得a=±
2
,
故答案為:±
2
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)A(-1,1),離心率為
6
3

(I)求橢圓C的方程
(II)設(shè)點(diǎn)B是點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn),P是橢圓C上的動(dòng)點(diǎn)(不同于A,B),直線AP,BP分別與直線x=3交于點(diǎn)M,N,問(wèn)是否存在點(diǎn)P使得△PAB和△PMN的面積相等,若存在,求出點(diǎn)P的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-x+a+1
(1)若f(x)≥0對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍.
(2)若f(x)在區(qū)間[a,a+1]是單調(diào)函數(shù),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中所有真命題的序號(hào)是
 

①“a>b”是“a2>b2”的充分條件;
②“|a|>|b|”是“a2>b2”的必要條件;
③“a>b”是“a+c>b+c”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列語(yǔ)句:
①函數(shù)y=sin(
2
-2x)
是偶函數(shù);
②函數(shù)y=sin(x+
π
4
)
在閉區(qū)間[-
π
2
π
2
]
上是增函數(shù);
③函數(shù)y=loga(x-1)+1(a>1)的圖象必過(guò)定點(diǎn)(2,1)
④函數(shù)y=3cos(2x-
π
4
)的對(duì)稱軸方程為x=
2
+
π
8
,k∈Z;
其中正確的語(yǔ)句的序號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log4x ,x>0
3x ,   x≤0
,則f[f(
1
4
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+sinx+cosx.若函數(shù)f(x)的圖象上存在不同的兩點(diǎn)A,B,使得曲線y=f(x)在點(diǎn)A,B處的切線互相垂直,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+y+4>3x+y-2>0,若x-y<λ恒成立,則λ取值范圍是(  )
A、[9,+∞)
B、(9,+∞)
C、[10,+∞)
D、(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+xsinx+cosx.
(1)求f(x)的最小值;
(2)若曲線y=f(x)在點(diǎn)(a,f(a))處與直線y=b相切,求a與b的值.
(3)若曲線y=f(x)與直線y=b 有兩個(gè)不同的交點(diǎn),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案