下列命題中所有真命題的序號(hào)是
 

①“a>b”是“a2>b2”的充分條件;
②“|a|>|b|”是“a2>b2”的必要條件;
③“a>b”是“a+c>b+c”的充要條件.
考點(diǎn):命題的真假判斷與應(yīng)用
專題:不等式的解法及應(yīng)用,簡易邏輯
分析:對(duì)于①可以舉出數(shù)字是負(fù)數(shù)時(shí),不正確,對(duì)于②、③可以根據(jù)不等式的性質(zhì)得出結(jié)果.
解答: 解:對(duì)于①,當(dāng)a,b是負(fù)數(shù)時(shí),a>b不能得到a2>b2,∴①不正確;
對(duì)于②,由于|a|>|b|≥0,根據(jù)不等式的性質(zhì)得a2>b2,反之也成立,故②正確;
對(duì)于③,根據(jù)不等式的性質(zhì),在不等式的兩邊同加上同一個(gè)數(shù),不等式方向不變,故③正確,
綜上可知②③是真命題,
故答案為:②③.
點(diǎn)評(píng):本題考查必要條件、充分條件與充要條件的判斷,考查不等式的基本性質(zhì)的簡單應(yīng)用,本題解題的關(guān)鍵是要判斷一個(gè)命題是一個(gè)假命題,只要舉出一個(gè)反例說明命題不正確即可,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將曲線C1:(x-4)2+y2=4所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?span id="hhdn9tf" class="MathJye">
1
2
得到曲線C2,將曲線C2向左(x軸負(fù)方向)平移4個(gè)單位,得到曲線C3
(Ⅰ)求曲線C3的方程;
(Ⅱ)垂直于x軸的直線l與曲線C3相交于C、D兩點(diǎn)(C、D可以重合),已知A(-2,0),B(2,0),直線AC、BD相交于點(diǎn)P,求P點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別過橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)左、右焦點(diǎn)F1、F2的動(dòng)直線l1、l2相交于P點(diǎn),與橢圓E分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4,且滿足k1+k2=k3+k4,已知當(dāng)l1與x軸重合時(shí),|AB|=2
3
,|CD|=
4
3
3

(1)求橢圓E的方程;
(2)是否存在定點(diǎn)M,N,使得|PM|+|PN|為定值?若存在,求出M、N點(diǎn)坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
,P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)點(diǎn)A為橢圓M的左頂點(diǎn),B,C為橢圓M上不同于點(diǎn)A的兩點(diǎn),若原點(diǎn)在△ABC的外部,且△ABC為直角三角形,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+
a
2x
(a∈R)為奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:①函數(shù)f(x)=sinx+
2
sinx
(x∈(0,π))
的最小值是2
2
;
②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形;
③如果正實(shí)數(shù)a,b,c滿足a+b>c,則
a
1+a
+
b
1+b
c
1+c
;
④如果y=f(x)是可導(dǎo)函數(shù),則f′(x0)=0是函數(shù)y=f(x)在x=x0處取到極值的必要不充分條件.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a∈R,若(x2+
a
x
)5
的二項(xiàng)展開式中x4項(xiàng)的系數(shù)為20,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:
①函數(shù)f(x)在=
1
lgx
(0,+∞)上是減函數(shù)
②函數(shù)f(x)的圖象連續(xù)不斷,且定義域?yàn)镽,若x=x0為極值點(diǎn),則f′(x0)=0
③函數(shù)f(x)=2sinxcosx的最小正周期為π
④已知
a
=(1,
3
),
b
=(0,-1),則
a
b
的夾角為
5
6
π

其中,正確命題的序號(hào)是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐底面半徑為r,母線長是底面半徑的3倍,在底面圓周上有一點(diǎn)A,求一個(gè)動(dòng)點(diǎn)P自A出發(fā)在側(cè)面上繞一周到A點(diǎn)的最短路程.

查看答案和解析>>

同步練習(xí)冊(cè)答案