【題目】某外語學(xué)校的一個(gè)社團(tuán)有7名同學(xué),其中2人只會(huì)法語,2人只會(huì)英語,3人既會(huì)法語又會(huì)英語,現(xiàn)選派3人到法國的學(xué)校交流訪問.求:

1)在選派的3人中恰有2人會(huì)法語的概率;

2)求在選派的3人中既會(huì)法語又會(huì)英語的人數(shù)的分布列.

【答案】1;(2)見解析.

【解析】

1)利用組合的知識(shí)計(jì)算出基本事件總數(shù)和滿足題意的基本事件數(shù),根據(jù)古典概型概率公式求得結(jié)果;

2)確定所有可能的取值,根據(jù)超幾何分布概率公式可計(jì)算出每個(gè)取值對(duì)應(yīng)的概率,進(jìn)而得到分布列.

1名同學(xué)中,會(huì)法語的人數(shù)為人,

人中選派人,共有種選法;其中恰有人會(huì)法語共有種選法;

選派的人中恰有人會(huì)法語的概率.
2)由題意可知:所有可能的取值為

;;

;

的分布列為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①對(duì)于獨(dú)立性檢驗(yàn),的觀測(cè)值越大,說明兩個(gè)分類變量之間的關(guān)系越強(qiáng);②某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大;③通過回歸直線及回歸系數(shù),可以精確反映變量的取值和變化趨勢(shì).其中正確的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線 與橢圓有且只有一個(gè)公共點(diǎn).

(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)是坐標(biāo)原點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn)、,且與直線交于點(diǎn),證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)若射線的極坐標(biāo)方程為.設(shè)相交于點(diǎn),相交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)任意,函數(shù)的圖像不在軸上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是正整數(shù),集合是數(shù)集的一個(gè)子集,且中任意兩個(gè)數(shù)的差不等于47.的元素個(gè)數(shù)的最大值記為(如),試求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過程逐次得到各個(gè)圖形.

若在圖④中隨機(jī)選。c(diǎn),則此點(diǎn)取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在四棱柱中,點(diǎn)分別為的中點(diǎn).

(1)求證: 平面;

(2)若四棱柱是長方體,且,求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱柱,中,,E中點(diǎn),FAD中點(diǎn).

1)證明:平面;

2)若直線AC與平面所成的角為,求的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案