【題目】已知函數(shù)f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π])的部分圖象如圖所示,若A( , ),B( , ).則下列說法錯誤的是( )
A.φ=
B.函數(shù)f(x)的一條對稱軸為x=
C.為了得到函數(shù)y=f(x)的圖象,只需將函數(shù)y=2sin2x的圖象向右平移 個單位
D.函數(shù)f(x)的一個單調(diào)減區(qū)間為[ , ]
【答案】D
【解析】解:對于A:由函數(shù)圖形T=丨 ﹣ 丨=π, ,
∴ω=2,
將A點( , )代入f(x)=2cos(2x﹣φ),
∴ =2cos(π﹣φ),
cosφ=﹣ ,φ∈[0,π]),
φ= ,
故A正確;
f(x)=2cos(2x﹣ ),
對于:B,由f(x)=2cos(2x﹣ ),
將x= ,求得2 ﹣ =3π,
故B正確;
C選項,將y=2sin2x向右平移 個單位,
得y=2sin(2x﹣ )
=cos(2x﹣ )
=2cos(2x﹣ )=f(x)
故C正確;
對于D,f(x)=2cos(2x﹣ ),2x﹣ ∈[2kπ,2kπ+π]k∈Z,
x∈[kπ+ ,kπ+ ]k∈Z,
∴選項D錯誤,
故答案選:D.
觀察函數(shù)圖形,求得周期T=π,ω=2,將點A代入,求得φ,求出函數(shù)的解析式,再求函數(shù)的對稱軸和單調(diào)遞減區(qū)間.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線的兩個焦點坐標是,且離心率為;
(1)求曲線的方程;
(2)設曲線表示曲線的軸左邊部分,若直線與曲線相交于兩點,求的取值范圍;
(3)在條件(2)下,如果,且曲線上存在點,使,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線x2﹣ =1(b>0)的左、右焦點分別為F1、F2 , 直線l過F2且與雙曲線交于A、B兩點.
(1)若l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設b= ,若l的斜率存在,M為AB的中點,且 =0,求l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為 .
(1)求曲線C1 , C2的直角坐標方程;
(2)已知點P,Q分別是線C1 , C2的動點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線C:y2=4x的焦點為F,斜率為k的直線l與拋物線C交于M,N兩點,若線段MN的垂直平分線與x軸交點的橫坐標為a(a>0),n=|MF|+|NF|,則2a﹣n等于( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=(log2x)2﹣2alog2x+b(x>0).當x= 時,f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】省環(huán)保廳對、、三個城市同時進行了多天的空氣質(zhì)量監(jiān)測,測得三個城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數(shù)據(jù)中隨機抽取一個,恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進行后續(xù)分析,求在城中應抽取的數(shù)據(jù)的個數(shù);
(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),其中a為實數(shù).
(Ⅰ)討論并求出f(x)的極值;
(Ⅱ)在a<1時,是否存在m>1,使得對任意的x∈(1,m)恒有f(x)>0,并說明理由;
(Ⅲ) 確定a的可能取值,使得存在n>1,對任意的x∈(1,n),恒有|f(x)|<(x﹣1)2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com