如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.

(1)求證:BF∥平面ACE;

(2)求證:BF⊥BD.

 

 

(1)詳見解析, (2) 詳見解析.

【解析】

試題分析:(1) 證明線面平行,需先證線線平行. 正方形ABCD中,BO=AB,又因為AB=EF,∴BO=EF,又因為EF∥BD,∴EFBO是平行四邊形,∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,∴BF∥平面ACE.列線面平行判定定理的條件必須要全面. (2)證明線線垂直,一般利用線面垂直進行轉(zhuǎn)化.條件為面面垂直,所以先由面面垂直性質(zhì)定理轉(zhuǎn)化為線面垂直:正方形ABCD中,AC⊥BD,又因為正方形ABCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,∴BD⊥平面ACE,∵EO?平面ACE,∴BD⊥EO,∵EO∥BF,∴BF⊥BD.

證明 (1)AC與BD交于O點,連接EO.

正方形ABCD中,BO=AB,又因為AB=EF,

∴BO=EF,又因為EF∥BD,

∴EFBO是平行四邊形,

∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,

∴BF∥平面ACE 7分

(2)正方形ABCD中,AC⊥BD,又因為正方形ABCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,

∴BD⊥平面ACE,∵EO?平面ACE,

∴BD⊥EO,∵EO∥BF,∴BF⊥BD. 14分

考點:線面平行判定定理,面面垂直性質(zhì)定理,

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷理科數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知,求證:

(2)已知,且

求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三5月信息卷文科數(shù)學(xué)試卷(解析版) 題型:填空題

在如圖所示的算法流程圖中,若輸入m=4,n=3,則輸出的a= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二理科數(shù)學(xué)試卷(解析版) 題型:填空題

若等差數(shù)列和等比數(shù)列的首項均為1,且公差,公比,則集合 的元素個數(shù)最多有 個.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知是虛數(shù)單位,,若復(fù)數(shù)的實部是,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知,過可作曲線的三條切線,則的取值范圍是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二文科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)向量的夾角為,則

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測三數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè),且.則的值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三下學(xué)期4月周練文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知,是空間中兩條不同的直線,,是空間中三個不同的平面,則下列命題正確的序號是 .

①若,,則; ②若,,則;

③若,,則; ④若,則

 

查看答案和解析>>

同步練習(xí)冊答案