【題目】如圖1,在矩形中,,,為的中點(diǎn),為中點(diǎn).將沿折起到,使得平面平面(如圖2).
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)在線段上是否存在點(diǎn),使得平面? 若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析
【解析】
(1)先證明平面.再證明.(2) 以為原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系(如圖),利用向量法求直線與平面所成角的正弦值.(3) 假設(shè)在線段上存在點(diǎn),使得平面.設(shè),且,根據(jù)平面求得,所以當(dāng)時(shí),平面.
(1)由已知,
因?yàn)?/span>為中點(diǎn),所以.
因?yàn)槠矫?/span>平面,且平面平面,
平面,所以平面.
又因?yàn)?/span>平面,所以.
(2)設(shè)為線段上靠近點(diǎn)的四等分點(diǎn),為中點(diǎn).
由已知易得.
由(1)可知,平面,
所以,.
以為原點(diǎn),所在直線分別為軸
建立空間直角坐標(biāo)系(如圖).
因?yàn)?/span>,,
所以.
設(shè)平面的一個(gè)法向量為,
因?yàn)?/span>,
所以 即
取,得.
而 .
所以直線與平面所成角的正弦值
(3)在線段上存在點(diǎn),使得平面.
設(shè),且,則,.
因?yàn)?/span>,所以,
所以,
所以,.
若平面,則.即.
由(2)可知,平面的一個(gè)法向量,
即,解得,
所以當(dāng)時(shí),平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)點(diǎn)是一個(gè)指數(shù)函數(shù)和一個(gè)對(duì)數(shù)函數(shù)的圖像的交點(diǎn),那么稱這個(gè)點(diǎn)為"好點(diǎn)".下列四個(gè)點(diǎn)P1(1,1),P2(1,2),P3(,),P4(2,2)中,"好點(diǎn)"有( )個(gè)
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若,是否存在,使得為偶函數(shù),如果存在,請(qǐng)舉例并證明,如果不存在,請(qǐng)說(shuō)明理由;
(2)若,判斷在上的單調(diào)性,并用定義證明;
(3)已知,存在,對(duì)任意,都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線為, 與軸的交點(diǎn)坐標(biāo)為,求的值;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示,過(guò)線段OC上一點(diǎn)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過(guò)的路程s(km).
(1)當(dāng)時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來(lái);
(3)若N城位于M地正南方向,且距M地650km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長(zhǎng)時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假:
(1)點(diǎn)P到圓心O的距離大于圓的半徑是點(diǎn)P在外的充要條件;
(2)兩個(gè)三角形的面積相等是這兩個(gè)三角形全等的充分不必要條件;
(3)是的必要不充分條件;
(4)x或y為有理數(shù)是xy為有理數(shù)的既不充分又不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列全稱量詞命題的真假:
(1)每一個(gè)末位是0的整數(shù)都是5的倍數(shù);
(2)線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;
(3)對(duì)任意負(fù)數(shù)的平方是正數(shù);
(4)梯形的對(duì)角線相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中, 平面,直線與平面所成的角為30°,為的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在各棱長(zhǎng)均為2的正三棱柱中, 分別為棱與的中點(diǎn), 為線段上的動(dòng)點(diǎn),其中, 更靠近,且.
(1)證明: 平面;
(2)若與平面所成角的正弦值為,求異面直線與所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com