【題目】如果一個(gè)點(diǎn)是一個(gè)指數(shù)函數(shù)和一個(gè)對(duì)數(shù)函數(shù)的圖像的交點(diǎn),那么稱這個(gè)點(diǎn)為"好點(diǎn)".下列四個(gè)點(diǎn)P1(1,1),P2(1,2),P3,),P4(2,2)中,"好點(diǎn)"有( )個(gè)

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

可設(shè)指數(shù)函數(shù)為y=ax,對(duì)數(shù)函數(shù)為y=logbx,容易判斷P1,P2不在對(duì)數(shù)函數(shù)圖象上,從而判斷這兩點(diǎn)不是“好點(diǎn)”,然后將P3的坐標(biāo)分別代入指數(shù)函數(shù)和對(duì)數(shù)函數(shù)解析式,從而可解出a,b,進(jìn)而判斷出P3為“好點(diǎn)”,同樣的方法可判斷P4為好點(diǎn),進(jìn)而找出正確選項(xiàng).

設(shè)指數(shù)函數(shù)為y=ax,對(duì)數(shù)函數(shù)為y=logbx;

對(duì)于對(duì)數(shù)函數(shù),x=1時(shí),y=0,則P1,P2不是對(duì)數(shù)函數(shù)圖象上的點(diǎn);

∴P1,P2不是好點(diǎn);

將P3的坐標(biāo)分別代入指數(shù)函數(shù)和對(duì)數(shù)函數(shù)解析式得:

;

解得

即P3是指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的交點(diǎn),即P3為“好點(diǎn)”;

同樣,將P4坐標(biāo)代入函數(shù)解析式得:

;

解得

∴P4是“好點(diǎn)”;

“好點(diǎn)”個(gè)數(shù)為2.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校計(jì)劃利用周五下午第一、二、三節(jié)課舉辦語(yǔ)文、數(shù)學(xué)、英語(yǔ)、理綜4科的專題講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學(xué)、理綜不安排在同一節(jié),則不同的安排方法共有( )

A. 6種 B. 24種 C. 30種 D. 36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫出下列每對(duì)集合之間的關(guān)系:

1;

2;

3;

4是對(duì)角線相等且互相平分的四邊形,是有一個(gè)內(nèi)角為直角的平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過(guò)點(diǎn),直線交橢圓于不同的兩點(diǎn)

(1)求橢圓的方程;

(2)求的取值范圍;

(3)若直線不過(guò)點(diǎn),求證:直線的斜率互為相反數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型商場(chǎng)去年國(guó)慶期間累計(jì)生成萬(wàn)張購(gòu)物單,從中隨機(jī)抽出張,對(duì)每單消費(fèi)金額進(jìn)行統(tǒng)計(jì)得到下表:

消費(fèi)金額(單位:元)

購(gòu)物單張數(shù)

25

25

30

由于工作人員失誤,后兩欄數(shù)據(jù)無(wú)法辨識(shí),但當(dāng)時(shí)記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計(jì)出的每單消費(fèi)額的中位數(shù)與平均數(shù)恰好相等.用頻率估計(jì)概率,完成下列問(wèn)題:

(1)估計(jì)去年國(guó)慶期間該商場(chǎng)累計(jì)生成的購(gòu)物單中,單筆消費(fèi)額超過(guò)元的概率;

(2)為鼓勵(lì)顧客消費(fèi),該商場(chǎng)計(jì)劃在今年國(guó)慶期間進(jìn)行促銷活動(dòng),凡單筆消費(fèi)超過(guò)元者,可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則為:從裝有大小材質(zhì)完全相同的個(gè)紅球和個(gè)黑球的不透明口袋中,隨機(jī)摸出個(gè)小球,并記錄兩種顏色小球的數(shù)量差的絕對(duì)值,當(dāng)時(shí),消費(fèi)者可分別獲得價(jià)值元、元和元的購(gòu)物券.求參與抽獎(jiǎng)的消費(fèi)者獲得購(gòu)物券的價(jià)值的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某四棱錐的三視圖如圖所示,該四棱錐的四個(gè)側(cè)面的面積中最大的是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校或班級(jí)舉行活動(dòng),通常需要張貼海報(bào)進(jìn)行宣傳.現(xiàn)讓你設(shè)計(jì)一張如圖所示的豎向張貼的海報(bào),要求版心面積為128 dm2,上、下兩邊各空2 dm,左、右兩邊各空1 dm.如何設(shè)計(jì)海報(bào)的尺寸,才能使四周空白面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形中,,,的中點(diǎn),中點(diǎn).將沿折起到,使得平面平面(如圖2).

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)在線段上是否存在點(diǎn),使得平面? 若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案