已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+4x+1.
(Ⅰ)求當(dāng)x≤0時(shí),f(x)的表達(dá)式;
(Ⅱ)求滿足不等式f(x2-2)<f(x)的x的取值范圍.
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)根據(jù)函數(shù)的奇偶性性即可求出當(dāng)x≤0時(shí),f(x)的表達(dá)式;
(Ⅱ)根據(jù)函數(shù)的奇偶性和單調(diào)性之間的關(guān)系將不等式f(x2-2)<f(x)進(jìn)行轉(zhuǎn)化即可求x的取值范圍.
解答: 解:(Ⅰ)當(dāng)x<0時(shí),-x>0,f(-x)=x2-4x+1,…(2分)
又f(x)為奇函數(shù),∴f(x)=-f(-x),…(4分)
即f(x)=-x2+4x-1.…(5分)
又f(-0)=-f(0),即f(0)=0,…(6分)
故當(dāng)x≤0時(shí),f(x)=
-x2+4x-1,x<0
0,               x=0.
.…(7分)
(Ⅱ)由(Ⅰ)知,f(x)在R上是增函數(shù),…(9分)
∴f(x2-2)<f(x)?x2-2<x,…(10分)
即x2-x-2<0…(11分)
解得-1<x<2.…(13分)
點(diǎn)評(píng):本題主要考查奇偶性的應(yīng)用以及不等式的求解,根據(jù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx,f(x+1)為偶函數(shù),函數(shù)f(x)的圖象與直線y=x相切.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)集合A={x|f(x)>0},B={x||x-1|<m},若集合B是集合A的子集,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(-1,-1)在曲線y=
x
x+a
上,則曲線在點(diǎn)P處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=x2+ax,對(duì)任意x∈R,總有f(1-x)=f(1+x),則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為奇函數(shù),且在(-∞,0)內(nèi)是減函數(shù),f(3)=0,則x f(x)<0的解集為( 。
A、(-3,0)∪(3,+∞)
B、(-∞,-3)∪(0,3 )
C、(-3,0)∪(0,3 )
D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)為一三角形的三邊長(zhǎng),則稱f(x)為“三角型函數(shù)”,已知函數(shù)f(x)=
2x+m
2x+2
(m>0)是“三角型函數(shù)”,則實(shí)數(shù)m的取值范圍是( 。
A、[1,4]
B、[0,2]
C、[2,4]
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=1,a3=3,求a18+a19+a20+a21+a22的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x3,x<0
-tanx,0≤x<
π
2
,則f(f(
π
4
))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)空間幾何體的三視圖如圖所示,其中正視圖、側(cè)視圖都是由半圓和矩形組成,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的體積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案