【題目】設(shè)f(x)、g(x)、h(x)是定義域?yàn)镽的三個(gè)函數(shù),對(duì)于命題:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),則f(x)、g(x)、h(x)中至少有一個(gè)增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題

【答案】D
【解析】解:①不成立.可舉反例:f(x)= .g(x)= ,h(x)=
②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),
前兩式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),結(jié)合第三式可得:g(x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正確.
故選:D.
①不成立.可舉反例:f(x)= .g(x)= ,h(x)=
②由題意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),
可得:g(x)=g(x+T),h(x)=h(x+T),f(x)=f(x+T),即可判斷出真假.;本題考查了函數(shù)的單調(diào)性與周期性、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以O為極點(diǎn),x軸正半軸為極軸建立直角坐標(biāo)系,圓C的極坐標(biāo)方程為,直線的參數(shù)方程為t為參數(shù)),直線和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn).

1)求圓心的極坐標(biāo);(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格(單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

根據(jù)(1)中所建立的回歸方程預(yù)測(cè)該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

當(dāng)為何值時(shí),銷售額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,ABCD,ADDC,△ACB是腰長(zhǎng)為2的等腰直角三角形,平面CDEF⊥平面ABCD

(1)求證:BCAF;

(2)求幾何體EF-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a=1時(shí),證明f(x)>f′(x)+ 對(duì)于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)an=1++=+…+(nN*),是否存在一次函數(shù)g(x),使得a1a2a3+…+an1g(n)(an-1)對(duì)n≥2的一切正整數(shù)都成立?并試用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.

)求函數(shù)單調(diào)區(qū)間和極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù). f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)討論f(x)的單調(diào)性;
(2)確定a的所有可能取值,使得f(x)> ﹣e1x在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案