【題目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a=1時(shí),證明f(x)>f′(x)+ 對(duì)于任意的x∈[1,2]成立.

【答案】
(1)

解:由f(x)=a(x﹣lnx)+ ,

得f′(x)=a(1﹣ )+

= = = (x>0).

若a≤0,則ax2﹣2<0恒成立,

∴當(dāng)x∈(0,1)時(shí),f′(x)>0,f(x)為增函數(shù),

當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù);

當(dāng)a>0,若0<a<2,當(dāng)x∈(0,1)和( ,+∞)時(shí),f′(x)>0,f(x)為增函數(shù),

當(dāng)x∈(1, )時(shí),f′(x)<0,f(x)為減函數(shù);

若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上為增函數(shù);

若a>2,當(dāng)x∈(0, )和(1,+∞)時(shí),f′(x)>0,f(x)為增函數(shù),

當(dāng)x∈( ,1)時(shí),f′(x)<0,f(x)為減函數(shù)


(2)

解:∵a=1,

令F(x)=f(x)﹣f′(x)=x﹣lnx ﹣1 =x﹣lnx+

∵ex>1+x,

∴x>ln(1+x),

∴ex1>x,則x﹣1>lnx,

∴F(x)> =

令φ(x)= ,則φ′(x)= = (x∈[1,2]).

∴φ(x)在[1,2]上為減函數(shù),則φ(x) ,

∴F(x)> 恒成立.

即f(x)>f′(x)+ 對(duì)于任意的x∈[1,2]成立


【解析】(1)求出原函數(shù)的導(dǎo)函數(shù),然后對(duì)a分類分析導(dǎo)函數(shù)的符號(hào),由導(dǎo)函數(shù)的符號(hào)確定原函數(shù)的單調(diào)性;
(2)構(gòu)造函數(shù)F(x)=f(x)﹣f′(x),求導(dǎo)后利用不等式x﹣1>lnx放縮,得到F(x)> = .令φ(x)= ,利用導(dǎo)數(shù)可得φ(x)在[1,2]上為減函數(shù),得到F(x)> 恒成立.由此可得f(x)>f′(x)+ 對(duì)于任意的x∈[1,2]成立.
本題考查利用導(dǎo)數(shù)加以函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了分類討論的數(shù)學(xué)思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是壓軸題.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地要經(jīng)過(guò)3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=Asin(x+),若f(0)=

(Ⅰ)求A的值;

(Ⅱ)將函數(shù)fx)的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變,得到函數(shù)gx)的圖象.

i)寫(xiě)出gx)的解析式和它的對(duì)稱中心;

ii)若α為銳角,求使得不等式g(α-)<)成立的α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l經(jīng)過(guò)兩直線l1:2x-y+4=0與l2:x-y+5=0的交點(diǎn),且與直線x-2y-6=0垂直.

(1)求直線l的方程.

(2)若點(diǎn)P(a,1)到直線l的距離為,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的圓臺(tái)中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺(tái)的一條母線.

(1)已知G,H分別為EC,F(xiàn)B的中點(diǎn),求證:GH∥平面ABC;
(2)已知EF=FB= AC=2 AB=BC,求二面角F﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)、g(x)、h(x)是定義域?yàn)镽的三個(gè)函數(shù),對(duì)于命題:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均為增函數(shù),則f(x)、g(x)、h(x)中至少有一個(gè)增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(a>0且a≠1).

(1)求f(x)的定義域;

(2)當(dāng)0<a<1時(shí),判斷f(x)在(2,+∞)的單惆性;

(3)是否存在實(shí)數(shù)a,使得當(dāng)f(x)的定義域?yàn)閇m,n]時(shí),值域?yàn)閇1+logan,1+1ogam],若存在,求出實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)字1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個(gè)數(shù)為( 。
A.24
B.48
C.60
D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)為1,Sn為數(shù)列{an}的前n項(xiàng)和,Sn+1=qSn+1,其中q>0,n∈N*
(1)若2a2 , a3 , a2+2成等差數(shù)列,求an的通項(xiàng)公式;
(2)設(shè)雙曲線x2 =1的離心率為en , 且e2= ,證明:e1+e2++en

查看答案和解析>>

同步練習(xí)冊(cè)答案