【題目】某市國慶節(jié)天假期的樓房認(rèn)購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學(xué)根據(jù)折線圖對這天的認(rèn)購量與成交量作出如下判斷:①日成交量的中位數(shù)是;②日成交量超過日平均成交量的有天;③認(rèn)購量與日期正相關(guān);④月日認(rèn)購量的增量大于月日成交量的增量.上述判斷中錯誤的個數(shù)為( )
A. B. C. D.
【答案】C
【解析】分析:將數(shù)據(jù)按照大小順序排列后,由于一共有7個數(shù)字,所以取第四個數(shù)字為中位數(shù).
日均成交量為成交量的平均數(shù),正相關(guān)為統(tǒng)計圖中的點從左下分布至右上.
認(rèn)購量與成交量的增量均是第七天與第六天數(shù)據(jù)之差.
詳解:將成交量數(shù)據(jù)按大小順序排列,中位數(shù)為26,所以①錯;
平均成交量為,超過44.1的只有一天,所以②錯;
由圖中可以看出,數(shù)據(jù)點并不是從左下分布至右上,所以③錯;
10月7日認(rèn)購量增量為,成交量增量為,所以④對.
故選C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)判斷在上的增減性,并證明你的結(jié)論
(2)解關(guān)于的不等式
(3)若在上恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值;
(3)證明: (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
其中,.
為了預(yù)測印刷千冊時每冊的成本費,建立了兩個回歸模型:,.
(1)根據(jù)散點圖,你認(rèn)為選擇哪個模型預(yù)測更可靠?(只選出模型即可)
(2)根據(jù)所給數(shù)據(jù)和(1)中的模型選擇,求關(guān)于的回歸方程,并預(yù)測印刷千冊時每冊的成本費.
附:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則 =( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】無窮數(shù)列滿足:為正整數(shù),且對任意正整數(shù),為前項、、、中等于的項的個數(shù).
(1)若,求和的值;
(2)已知命題 存在正整數(shù),使得,判斷命題的真假并說明理由;
(3)若對任意正整數(shù),都有恒成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請你幫忙設(shè)計2010年玉樹地震災(zāi)區(qū)小學(xué)的新校舍,如圖,在學(xué)校的東北力有一塊地,其中兩面是不能動的圍墻,在邊界內(nèi)是不能動的一些體育設(shè)施.現(xiàn)準(zhǔn)備在此建一棟教學(xué)樓,使樓的底面為一矩形,且靠圍墻的方向須留有5米寬的空地,問如何設(shè)計,才能使教學(xué)樓的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有個大小相同的黑球和白球.已知從袋中任意摸出個球,至少得到個白球的概率是.
(1)求白球的個數(shù);
(2)從袋中任意摸出個球,記得到白球的個數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機構(gòu)對員工進行專業(yè)技術(shù)培訓(xùn),其中培訓(xùn)機構(gòu)費用成本為12000元.公司每位員工的培訓(xùn)費用按以下方式與該機構(gòu)結(jié)算:若公司參加培訓(xùn)的員工人數(shù)不超過30人時,每人的培訓(xùn)費用為850元;若公司參加培訓(xùn)的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓(xùn)費減少10元.已知該公司最多有60位員工可參加培訓(xùn),設(shè)參加培訓(xùn)的員工人數(shù)為人,每位員工的培訓(xùn)費為元,培訓(xùn)機構(gòu)的利潤為元.
(1)寫出與 之間的函數(shù)關(guān)系式;
(2)當(dāng)公司參加培訓(xùn)的員工為多少人時,培訓(xùn)機構(gòu)可獲得最大利潤?并求最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com