【題目】已知函數(shù)f(x)=x﹣ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值;
(3)證明: (n∈N*).
【答案】
(1)解:函數(shù)的定義域為(﹣a,+∞),求導函數(shù)可得
令f′(x)=0,可得x=1﹣a>﹣a
令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a
∴x=1﹣a時,函數(shù)取得極小值且為最小值
∵函數(shù)f(x)=x﹣ln(x+a)的最小值為0,
∴f(1﹣a)=1﹣a﹣0,解得a=1
(2)解:當k≤0時,取x=1,有f(1)=1﹣ln2>0,故k≤0不合題意
當k>0時,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,
求導函數(shù)可得g′(x)=
g′(x)=0,可得x1=0,
①當k≥ 時, ,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上單調(diào)遞減,從而對任意的x∈[0,+∞),總有g(x)≤g(0)=0,即對任意的x∈[0,+∞),有f(x)≤kx2成立;
②當0<k< 時, ,對于 ,g′(x)>0,因此g(x)在 上單調(diào)遞增,
因此取 時,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;
綜上知,k≥ 時對任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值為
(3)證明:當n=1時,不等式左邊=2﹣ln3<2=右邊,所以不等式成立
當n≥2時,
在(2)中,取k= ,得f(x)≤ x2,∴ (i≥2,i∈N*).
∴ =f(2)+ <2﹣ln3+ =2﹣ln3+1﹣ <2
綜上, (n∈N*)
【解析】(1)確定函數(shù)的定義域,求導函數(shù),確定函數(shù)的單調(diào)性,求得函數(shù)的最小值,利用函數(shù)f(x)=x﹣ln(x+a)的最小值為0,即可求得a的值;(2)當k≤0時,取x=1,有f(1)=1﹣ln2>0,故k≤0不合題意;當k>0時,令g(x)=f(x)﹣kx2 , 即g(x)=x﹣ln(x+1)﹣kx2 , 求導函數(shù),令g′(x)=0,可得x1=0, ,分類討論:①當k≥ 時, ,g(x)在(0,+∞)上單調(diào)遞減,g(x)≤g(0)=0;②當0<k< 時, ,對于 ,g′(x)>0,因此g(x)在 上單調(diào)遞增,由此可確定k的最小值;(3)當n=1時,不等式左邊=2﹣ln3<2=右邊,不等式成立;當n≥2時, ,在(2)中,取k= ,得f(x)≤ x2 , 從而可得 ,由此可證結論.
【考點精析】認真審題,首先需要了解函數(shù)的最大(小)值與導數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值).
科目:高中數(shù)學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,b∈R,函數(shù)f(x)=4ax3﹣2bx﹣a+b.
(1)證明:當0≤x≤1時,
(i)函數(shù)f(x)的最大值為|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1對x∈[0,1]恒成立,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實數(shù)的值;
(2)在(1)的條件下,若存在實數(shù)使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進行數(shù)據(jù)分析,為了考察甲球員對球隊的貢獻,現(xiàn)作如下數(shù)據(jù)統(tǒng)計:
球隊勝 | 球隊負 | 總計 | |
甲參加 | 22 | b | 30 |
甲未參加 | c | 12 | d |
總計 | 30 | e | n |
(1)求b,c,d,e,n的值,據(jù)此能否有97.7%的把握認為球隊勝利與甲球員參賽有關;
(2)根據(jù)以往的數(shù)據(jù)統(tǒng)計,乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個位置,且出場率分別為:0.2,0.5,0.2,0.1,當出任前鋒、中鋒、后衛(wèi)以及守門員時,球隊輸球的概率依次為:0.4,0.2,0.6,0.2.則:
當他參加比賽時,求球隊某場比賽輸球的概率;
當他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔當前鋒的概率;
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,其焦距為,若,則稱橢圓為“黃金橢圓”.黃金橢圓有如下性質:“黃金橢圓”的左、右焦點分別是,,以,,,為頂點的菱形的內(nèi)切圓過焦點,.
(1)類比“黃金橢圓”的定義,試寫出“黃金雙曲線”的定義;
(2)類比“黃金橢圓”的性質,試寫出“黃金雙曲線”的性質,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】智能手機的出現(xiàn),改變了我們的生活,同時也占用了我們大量的學習時間.某市教育機構從名手機使用者中隨機抽取名,得到每天使用手機時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是: ,.
(1)根據(jù)頻率分布直方圖,估計這名手機使用者中使用時間的中位數(shù)是多少分鐘? (精確到整數(shù))
(2)估計手機使用者平均每天使用手機多少分鐘? (同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)在抽取的名手機使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市國慶節(jié)天假期的樓房認購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學根據(jù)折線圖對這天的認購量與成交量作出如下判斷:①日成交量的中位數(shù)是;②日成交量超過日平均成交量的有天;③認購量與日期正相關;④月日認購量的增量大于月日成交量的增量.上述判斷中錯誤的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且a2an=S2+Sn對一切正整數(shù)n都成立.
(1)求a1 , a2的值;
(2)設a1>0,數(shù)列{lg }的前n項和為Tn , 當n為何值時,Tn最大?并求出Tn的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com