【題目】下列說(shuō)法中正確的是(
A.數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4
B.一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的平方
C.數(shù)據(jù)3,5,7,9的標(biāo)準(zhǔn)差是數(shù)據(jù)6、10、14、18的標(biāo)準(zhǔn)差的一半
D.頻率分布直方圖中各小長(zhǎng)方形的面積等于相應(yīng)各組的頻數(shù)

【答案】C
【解析】解:對(duì)于A,數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4和6,故原命題錯(cuò)誤;
對(duì)于B,一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)方差的算術(shù)平方根,故原命題錯(cuò)誤;
對(duì)于C,數(shù)據(jù)3,5,7,9的方差是數(shù)據(jù)6、10、14、18的方差的 ,
所以標(biāo)準(zhǔn)差是它的 ,命題正確;
對(duì)于D,頻率分布直方圖中各小長(zhǎng)方形的面積等于相應(yīng)各組的頻率,故原命題錯(cuò)誤.
故選:C.
【考點(diǎn)精析】利用平均數(shù)、中位數(shù)、眾數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其導(dǎo)函數(shù)為.

(1)設(shè),若函數(shù)上有且只有一個(gè)零點(diǎn),求的取值范圍;

(2)設(shè),且,點(diǎn)是曲線上的一個(gè)定點(diǎn),是否存在實(shí)數(shù),使得成立?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且和直線相切,記動(dòng)圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過(guò)的直線交于一點(diǎn),交軸于點(diǎn),過(guò)點(diǎn)的垂線交于另一點(diǎn),若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn)F(0,﹣1),且與直線l:y=1相切,橢圓N的對(duì)稱軸為坐標(biāo)軸,O點(diǎn)為坐標(biāo)原點(diǎn),F(xiàn)是其一個(gè)焦點(diǎn),又點(diǎn)A(0,2)在橢圓N上.若過(guò)F的動(dòng)直線m交橢圓于B,C點(diǎn),交軌跡M于D,E兩點(diǎn),設(shè)S1為△ABC的面積,S2為△ODE的面積,令Z=S1S2 , Z的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點(diǎn)圖;

(2)求回歸直線方程;

(3)據(jù)此估計(jì)外賣份數(shù)為12份時(shí),收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式,

②參考數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn).

(1)證明:PA∥平面BDE;
(2)求二面角B﹣DE﹣C的平面角的余弦值;
(3)在棱PB上是否存在點(diǎn)F,使PB⊥平面DEF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 直線l經(jīng)過(guò)F2且交橢圓C于A,B兩點(diǎn)(如圖),△ABF1的周長(zhǎng)為4 ,原點(diǎn)O到直線l的最大距離為1.

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)F2作弦AB的垂線交橢圓C于M,N兩點(diǎn),求四邊形AMBN面積最小時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD為梯形,AD∥BC,∠ABC=90°,AD=2,AB=4,BC=5,圖中陰影部分(梯形剪去一個(gè)扇形)繞AB旋轉(zhuǎn)一周形成一個(gè)旋轉(zhuǎn)體.
(1)求該旋轉(zhuǎn)體的表面積;
(2)求該旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí).若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元.
(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)x與騎兵個(gè)數(shù)y表示每天的利潤(rùn)W(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案