【題目】在中,的對(duì)邊分別為,且成等差數(shù)列.
(1)求的值;
(2)求的取值范圍.
【答案】(1)(2)
【解析】
試題(I)根據(jù)等差數(shù)列的性質(zhì)可知,利用正弦定理把邊轉(zhuǎn)化成角的正弦,化簡整理得,求得,進(jìn)而求得;(II)先利用二倍角公式及輔助角對(duì)原式進(jìn)行化簡整理,進(jìn)而根據(jù)的范圍和正弦函數(shù)的單調(diào)性求得的范圍.
試題解析:(Ⅰ)∵acosC,bcosB,ccosA成等差數(shù)列,
∴acosC+ccosA=2bcosB,
由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC,
代入得:2RsinAcosC+2RcosAsinC=4RsinBcosB,
即:sin(A+C)=sinB,
∴sinB=2sinBcosB,
又在△ABC中,sinB≠0,
∴,
∵0<B<π,
∴;
(Ⅱ)∵,
∴
∴
=
=,
∵,
∴
∴2sin2A+cos(A﹣C)的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:(),它的上,下頂點(diǎn)分別為A,B,左,右焦點(diǎn)分別為,,若四邊形為正方形,且面積為2.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)存在斜率不為零且平行的兩條直線,,它們與橢圓E分別交于點(diǎn)C,D,M,N,且四邊形是菱形,求出該菱形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】個(gè)人所得稅是國家對(duì)本國公民、居住在本國境內(nèi)的個(gè)人的所得和境外個(gè)人來源于本國的所得征收的一種所得稅.我國在1980年9月10日,第五屆全國人民代表大會(huì)第三次會(huì)議通過并公布了《中華人民共和國個(gè)人所得稅法》.公民依法誠信納稅是義務(wù),更是責(zé)任現(xiàn)將自2013年至2017年的個(gè)人所得稅收入統(tǒng)計(jì)如下
并制作了時(shí)間代號(hào)x與個(gè)人所得稅收入的如如圖所示的散點(diǎn)圖:
根據(jù)散點(diǎn)圖判斷,可用①y=menx與②作為年個(gè)人所得稅收入y關(guān)于時(shí)間代號(hào)x的回歸方程,經(jīng)過數(shù)據(jù)運(yùn)算和處理,得到如下數(shù)據(jù):
以下計(jì)算過程中四舍五入保留兩位小數(shù).
(1)根據(jù)所給數(shù)據(jù),分別求出①,②中y關(guān)于x的回歸方程;
(2)已知2018年個(gè)人所得稅收人為13.87千億元,用2018年的數(shù)據(jù)驗(yàn)證(1)中所得兩個(gè)回歸方程,哪個(gè)更適宜作為y關(guān)于時(shí)間代號(hào)x的回歸方程?
(3)你還能從統(tǒng)計(jì)學(xué)哪些角度來進(jìn)一步確認(rèn)哪個(gè)回歸方程更適宜? (只需敘述,不必計(jì)算)
附:對(duì)于一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),對(duì)任意的都有,且當(dāng)時(shí),,則當(dāng)時(shí),方程的所有根之和為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報(bào)廢的出租車,現(xiàn)有采購成本分別為萬元/輛和萬元/輛的兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車車型使用壽命頻數(shù)表如下:
使用壽命年數(shù) | 5年 | 6年 | 7年 | 8年 | 總計(jì) |
型出租車(輛) | 10 | 20 | 45 | 25 | 100 |
型出租車(輛) | 15 | 35 | 40 | 10 | 100 |
(1)填寫下表,并判斷是否有的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車型有關(guān)?
使用壽命不高于年 | 使用壽命不低于年 | 總計(jì) | |
型 | |||
型 | |||
總計(jì) |
(2)從和的車型中各隨機(jī)抽取車,以表示這車中使用壽命不低于年的車數(shù),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)公司要求,采購成本由出租公司負(fù)責(zé),平均每輛出租車每年上交公司萬元,其余維修和保險(xiǎn)等費(fèi)用自理.假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛出租車使用壽命的概率,分別以這輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會(huì)選擇采購哪款車型?
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)g(x)=f(1-x)-kx+k-恰有三個(gè)不同的零點(diǎn),則k的取值范圍是( )
A. (-2-,0]∪ B. (-2+,0]∪
C. (-2-,0]∪ D. (-2+,0]∪
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),△IOJ的邊IJ上的中線長為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com