【題目】已知a、b、c分別是△ABC的三個內(nèi)角A、B、C的對邊.
(1)若△ABC面積SABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.

【答案】
(1)解:∵ ,

,得b=1,

由余弦定理得:a2=b2+c2﹣2bccosA=12+22﹣2×1×2cos60°=3,

所以


(2)解:由余弦定理得: ,∴a2+b2=c2,

所以∠C=90°;

在Rt△ABC中, ,所以 ,

所以△ABC是等腰直角三角形


【解析】(1)由A的度數(shù)求出sinA和cosA的值,再由c及三角形的面積,利用三角形的面積公式求出b的值,然后由b,c及cosA的值,利用余弦定理即可求出a的值;(2)由三角形的三邊a,b及c,利用余弦定理表示出cosB,代入已知的a=ccosB,化簡可得出a2+b2=c2 , 利用勾股定理的逆定理即可判斷出三角形為直角三角形,在直角三角形ABC中,利用銳角三角函數(shù)定義表示出sinA,代入b=csinA,化簡可得b=a,從而得到三角形ABC為等腰直角三角形.
【考點精析】認真審題,首先需要了解余弦定理的定義(余弦定理:;;).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx圖象與直線x﹣y﹣4=0相切于(1,f(1))
(1)求實數(shù)a,b的值;
(2)若方程f(x)=m﹣7x有三個解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx在x=1處取得極值2.
(1)求f(x)的解析式;
(2)若(m+3)x﹣x2ex+2x2≤f(x)對于任意的x∈(0,+∞)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 點M(0,2)關于直線y=﹣x的對稱點在橢圓C上,且△MF1F2為正三角形.
(1)求橢圓C的方程;
(2)垂直于x軸的直線與橢圓C交于A,B兩點,過點P(4,0)的直線PB交橢圓C于另一點E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x∈R,x2+1>m;命題q:指數(shù)函數(shù)f(x)=(3﹣m)x是增函數(shù).若“p∧q”為假命題且“p∨q”為真命題,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖示,A,B分別是橢圓C: (a>b>0)的左右頂點,F(xiàn)為其右焦點,2是|AF與|FB|的等差中項, 是|AF|與|FB|的等比中項.點P是橢圓C上異于A、B的任一動點,過點A作直線l⊥x軸.以線段AF為直徑的圓交直線AP于點A,M,連接FM交直線l于點Q.

(1)求橢圓C的方程;
(2)試問在x軸上是否存在一個定點N,使得直線PQ必過該定點N?若存在,求出N點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱錐A﹣BCD的側(cè)棱長為2,底面BCD的邊長為2 ,E,分別為BC,BD的中點,則三棱錐A﹣BEF的外接球的半徑R= , 內(nèi)切球半徑r=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A,B是非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合中B都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射,設f:x→ 是從集合A到集合B的一個映射.①若A={0,1,2},則A∩B=;②若B={1,2},則A∩B=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2 ,PD=CD=2,則二面角A﹣PB﹣C的正切值為

查看答案和解析>>

同步練習冊答案