設(shè)進(jìn)入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨(dú)立,各顧客之間購買商品也是相互獨(dú)立的.
(1)求進(jìn)入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(2)記ξ表示進(jìn)入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)進(jìn)入商場的1位顧客至少購買甲、乙兩種商品中的一種的對立事件為,該顧客即不習(xí)甲商品也不購買乙商品,我們可以利用對立事件概率減法公式求解.
(2)確定ξ的取值,求出相應(yīng)的概率,我們列出ξ的分布列,計(jì)算后代入期望公式即可得到數(shù)學(xué)期望.
解答: 解:(1)進(jìn)入商場的1位顧客至少購買甲、乙兩種商品中的一種的對立事件為,該顧客即不習(xí)甲商品也不購買乙商品,則p=1-(1-0.5)(1-0.6)=0.8;
(2)ξ的取值有0、1、2、3,則
p(ξ=0)=(1-0.8)3=0.008,p(ξ=1)=
C
1
3
(1-0.8)20.8=0.096
p(ξ=2)=
C
2
3
(1-0.8)10.82=0.384
,p(ξ=3)=0.83=0.512,
故分布列為
ξ 0 1 2 3
p 0.008 0.096 0.384 0.512
E(ξ)=3×0.8=2.4.
點(diǎn)評:本題考查相互獨(dú)立事件的概率計(jì)算,以及求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.突破口:分清相互獨(dú)立事件的概率求法,對于“至少”常從反面入手?善鸬胶喕淖饔茫
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2-2x+2與y=-x2+ax+b(a>0,b>0)在它們的一個(gè)交點(diǎn)處切線互相垂直,則
1
a
+
4
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校舉行知識(shí)競賽,第一輪選拔共設(shè)有1,2,3三個(gè)問題,每位參賽者按問題1,2,3的順序作答,競賽規(guī)則如下:
①每位參賽者計(jì)分器的初始分均為10分,答對問題1,2,3分別加1分,2分,3分,答錯(cuò)任一題減2分;
②每回答一題,積分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累計(jì)分?jǐn)?shù)大于或等于12分時(shí),答題結(jié)束,進(jìn)入下一輪;當(dāng)答完三題,累計(jì)分?jǐn)?shù)仍不足12分時(shí),答題結(jié)束,淘汰出局.
已知甲同學(xué)回答1,2,3三個(gè)問題正確的概率依次為
3
4
,
1
2
,
1
3
,且各題回答正確與否相互之間沒有影響.
(1)求甲同學(xué)能進(jìn)入下一輪的概率;
(2)用X表示甲同學(xué)本輪答題結(jié)束時(shí)累計(jì)分?jǐn)?shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球、2個(gè)黑球,乙箱子里裝有1個(gè)白球、2個(gè)黑球,這些球除顏色外完全相同,每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng).(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)求在1次游戲中獲獎(jiǎng)的概率;
(Ⅱ)求在2次游戲中獲獎(jiǎng)次數(shù)X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log
1
4
an(n∈N*).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=an•bn,求{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax-b的零點(diǎn)是1,則g(x)=bx2-ax的零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線:y=x+b與曲線:x=
1-y2
有二個(gè)不同的公共點(diǎn),則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
x+y-1≥0
x≤2
y≤3
,則z=y-x的最小值是( 。
A、1B、5C、-3D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(1-x)=f(1+x),且f(x)在[1,+∞)是增函數(shù),如果不等式f(1-m)<f(m)成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案