【題目】已知橢圓過點

(1)求橢圓的方程,并求其離心率;

(2)過點軸的垂線,設點為第四象限內(nèi)一點且在橢圓上(點不在直線上),點關(guān)于的對稱點為,直線交于另一點.設為原點,判斷直線與直線的位置關(guān)系,并說明理由.

【答案】(1)橢圓的方程為,離心率(2)直線與直線平行,理由見解析.

【解析】

1)將P點代入橢圓方程,可得a的值,結(jié)合離心率的公式可得離心率的值;

2)設直線,設點的坐標為,,分別求出,根據(jù)斜率公式以及兩直線的位置關(guān)系與斜率的關(guān)系可得答案.

解:(1)由橢圓方程橢圓過點,可得

∴橢圓的方程為,離心率

(2)直線與直線平行.證明如下:

設直線,,

設點的坐標為,,

,

,∴,同理,

,

,有,

在第四象限,∴,且不在直線上.∴,

,故,∴直線與直線平行.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】工廠車間某部門有8個小組,在一次技能考試中成績情況分析如下:

小組

1

2

3

4

5

6

7

8

大于90分人數(shù)

6

6

7

3

5

3

3

7

不大于90分人數(shù)

39

39

38

42

40

42

42

38

1)求90分以上人數(shù)對小組序號的線性回歸方程;

附:回歸方程為,其中,.本題,.

2)能否在犯錯誤的概率不超過0.01的前提下認為7組與8組的成績是否優(yōu)秀(大于90分)與小組有關(guān)系.附部分臨界值表:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)當=-1時,求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人在塔的正東方向沿著南偏西60°的方向前進40 m以后,望見塔在東北方向上,若沿途測得塔的最大仰角為30°,則塔高為________________m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,,底面ABC.

1)求證:平面平面PBC

2)若,MPB的中點,求AM與平面PBC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意,,給出下列命題:

①“”是“”的充要條件;

②“是無理數(shù)”是“是無理數(shù)”的充要條件;

③“”是“”的必要條件,

④“”是“”的充分條件.

其中真命題的個數(shù)為().

A.1

B.2

C.3

D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為拋物線的焦點,為拋物線上三點,且點在第一象限,直線經(jīng)過點與拋物線在點處的切線平行,點的中點.

(1)證明:軸平行;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓M=1a>b>c)的一個頂點坐標為(0,1),焦距為2.若直線y=x+m與橢圓M有兩個不同的交點AB

I)求橢圓M的方程;

II)將表示為m的函數(shù),并求△OAB面積的最大值(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠修建一個長方體無蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設池底長方形長為x米.

1)求底面積,并用含x的表達式表示池壁面積;

2)怎樣設計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

同步練習冊答案