【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為6組,得到如下所示頻數(shù)分布表.
分?jǐn)?shù)段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(I)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,能否判斷數(shù)學(xué)成績(jī)與性別有關(guān);
(II)規(guī)定80分以上為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”. (,其中)
【答案】(1)不能判斷(2)沒有90%以上的把握
【解析】試題分析: 利用同一組數(shù)據(jù)用該區(qū)間中點(diǎn)值作代表,計(jì)算男女生各自的成績(jī)平均數(shù),即可得出結(jié)論。
根據(jù)所給的條件寫出列聯(lián)表,根據(jù)列聯(lián)表做出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到結(jié)論。
解析:(I) 男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5,
女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5,
從男、女生各自的平均分來(lái)看,并不能判斷數(shù)學(xué)成績(jī)與性別有關(guān).
(II)由頻數(shù)分布表可知:在抽取的100名學(xué)生中,“男生組”中的優(yōu)分有15人,“女生組”中的優(yōu)分有15人,據(jù)此可得2×2列聯(lián)表如下:
優(yōu)分 | 非優(yōu)分 | 合計(jì) | |
男生 | 15 | 45 | 60 |
女生 | 15 | 25 | 40 |
合計(jì) | 30 | 70 | 100 |
可得≈1.789,
因?yàn)?.79<2.706,所以沒有90%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在[﹣1,1]上的奇函數(shù),且對(duì)任意a、b∈[﹣1,1],當(dāng)a+b≠0時(shí),都有 >0.
(1)若a>b,比較f(a)與f(b)的大小;
(2)解不等式f(x﹣ )<f(x﹣ );
(3)記P={x|y=f(x﹣c)},Q={x|y=f(x﹣c2)},且P∩Q=,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且.令.
(1)求的通項(xiàng)公式;
(2)若,且數(shù)列的前項(xiàng)和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且滿足, 為常數(shù).
(1)是否存在數(shù)列,使得?若存在,寫出一個(gè)滿足要求的數(shù)列;若不存在,說(shuō)明理由.
(2)當(dāng)時(shí),求證: .
(3)當(dāng)時(shí),求證:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)(x∈R)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時(shí)都成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A.若x在 內(nèi),則sinx>cosx
B.函數(shù) 的圖象的一條對(duì)稱軸是
C.函數(shù) 的最大值為π
D.函數(shù)y=sin2x的圖象可以由函數(shù) 的圖象向右平移 個(gè)單位而得
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com