【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(其中t為參數(shù),.在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸所建立的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.設(shè)直線l與曲線C相交于AB兩點(diǎn).

1)求曲線C和直線l的直角坐標(biāo)方程;

2)已知點(diǎn),求的最大值.

【答案】1,;(2.

【解析】

1可得,根據(jù)互化公式可得,消去參數(shù)可得;

2)聯(lián)立直線l的參數(shù)方程與曲線C的直角坐標(biāo)方程,根據(jù)參數(shù)的幾何意義以及三角函數(shù)的值域可得結(jié)果.

1)根據(jù)題意得,曲線C的極坐標(biāo)方程為,

,即,

所以曲線C的直角坐標(biāo)方程為,即,

直線l的普通方程為.

2)聯(lián)立直線l的參數(shù)方程與曲線C的直角坐標(biāo)方程,

,代入,

化簡(jiǎn),得.

設(shè)點(diǎn)A,B所對(duì)應(yīng)的參數(shù)分別為,

,,

由(1)可知,曲線C是圓心,半徑為1的圓,點(diǎn)P在圓外,

由直線參數(shù)方程參數(shù)的幾何意義知,

,當(dāng)且僅當(dāng)時(shí)取到.

的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)盒子,甲盒子里有個(gè)紅球,乙盒子里有個(gè)紅球和個(gè)黑球,現(xiàn)從乙盒子里隨機(jī)取出個(gè)球放入甲盒子后,再?gòu)募缀凶永镫S機(jī)取一球,記取到的紅球個(gè)數(shù)為個(gè),則隨著的增加,下列說(shuō)法正確的是(

A.增加,增加B.增加,減小

C.減小,增加D.減小,減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】開(kāi)學(xué)后,某學(xué)校食堂為了減少師生就餐排隊(duì)時(shí)間,特推出即點(diǎn)即取的米飯?zhí)撞秃兔媸程撞蛢煞N,已知小明同學(xué)每天中午都會(huì)在食堂提供的米飯?zhí)撞秃兔媸程撞椭羞x擇一種,米飯?zhí)撞偷膬r(jià)格是每份15元,面食套餐的價(jià)格是每份10元,如果小明當(dāng)天選擇了某種套餐,她第二天會(huì)有的可能性換另一種類型的套餐,假如第1天小明選擇了米飯?zhí)撞停?/span>n天選擇米飯?zhí)撞偷母怕?/span>,給出以下論述:①小明同學(xué)第二天一定選擇面食套餐;②;③;④前n天小明同學(xué)午餐花費(fèi)的總費(fèi)用數(shù)學(xué)期望為.其中正確的是( )

A.②④B.①②③C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球起源于中國(guó)東周時(shí)期的齊國(guó),當(dāng)時(shí)把足球稱為“蹴鞠”.漢代蹴鞠是訓(xùn)練士兵的手段,制定了較為完備的體制.如專門設(shè)置了球場(chǎng),規(guī)定為東西方向的長(zhǎng)方形,兩端各設(shè)六個(gè)對(duì)稱的“鞠域”,也稱“鞠室”,各由一人把守.比賽分為兩隊(duì),互有攻守,以踢進(jìn)對(duì)方鞠室的次數(shù)決定勝負(fù).1970年以前的世界杯用球多數(shù)由舉辦國(guó)自己設(shè)計(jì),所以每一次球的外觀都不同,拼塊的數(shù)目如同擲骰子一樣沒(méi)準(zhǔn).1970年起,世界杯官方用球選擇了三十二面體形狀的足球,沿用至今.如圖Ⅰ,三十二面體足球的面由邊長(zhǎng)相等的12塊正五邊形和20塊正六邊形拼接而成,形成一個(gè)近似的球體.現(xiàn)用邊長(zhǎng)為的上述正五邊形和正六邊形所圍成的三十二面體的外接球作為足球,其大圓圓周展開(kāi)圖可近似看成是由4個(gè)正六邊形與4個(gè)正五邊形以及2條正六邊形的邊所構(gòu)成的圖形的對(duì)稱軸截圖形所得的線段,如圖Ⅱ,則該足球的表面積約為( )

參考數(shù)據(jù):,,

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別是、,離心率,過(guò)點(diǎn)的直線交橢圓、兩點(diǎn), 的周長(zhǎng)為16.

(1)求橢圓的方程;

(2)已知為原點(diǎn),圓 )與橢圓交于、兩點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),若直線軸分別交于、兩點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,直線相交于,兩點(diǎn),當(dāng)時(shí),

1)求橢圓的標(biāo)準(zhǔn)方程.

2)在橢圓上是否存在點(diǎn),使得當(dāng)時(shí),的平分線總是平行于軸?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購(gòu)買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%

①當(dāng)x=10時(shí),顧客一次購(gòu)買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)若存在最大值,且,求實(shí)數(shù)的取值范圍;

2)令,,求證:對(duì)任意的,總存在最小值,且.

查看答案和解析>>

同步練習(xí)冊(cè)答案