(本小題滿分14分)
已知函數(shù).
(Ⅰ)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),試判斷與的大小關(guān)系,并證明你的結(jié)論;
(Ⅲ) 當(dāng)且時(shí),證明:.
(Ⅰ)的取值范圍為.(Ⅱ)當(dāng)時(shí),.
(Ⅲ)見解析.
【解析】(I)求函數(shù).的導(dǎo)數(shù),注意定義域,令導(dǎo)函數(shù)大于或等于0,分離參數(shù),令一端配方求出最值即得的范圍;(II)由(Ⅰ)可知: 時(shí),,(當(dāng)時(shí),等號(hào)成立),令,則取兩邊分別相加整理即得結(jié)論;(III)由(2)知,當(dāng),令求導(dǎo)可得最小值,所以時(shí),(當(dāng)且僅當(dāng)時(shí),等號(hào)成立),令,則,所以,,因而可得,所以, 所以,然后不等式累加證明即可.
(Ⅰ),函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012082415295869813412/SYS201208241530439393570337_DA.files/image002.png">.
.
依題意,在恒成立,在恒成立.
,
,∴的取值范圍為. ……………………………………………………… (4分)
(Ⅱ)當(dāng)時(shí),.
證明:當(dāng)時(shí),欲證 ,只需證.
由(Ⅰ)可知:取,則,
而,(當(dāng)時(shí),等號(hào)成立).
用代換,得,即,
∴.
在上式中分別取,并將同向不等式相加,得.
∴當(dāng)時(shí),. ………………………………………… (9分)
(Ⅲ)由(Ⅱ)可知(時(shí),等號(hào)成立).
而當(dāng)時(shí):,∴ 當(dāng)時(shí),.
設(shè),則,
∴在上遞減,在上遞增,
∴,即在時(shí)恒成立.
故當(dāng)時(shí),(當(dāng)且僅當(dāng)時(shí),等號(hào)成立). …… ①
用代換得: (當(dāng)且僅當(dāng)時(shí),等號(hào)成立). …… ②
當(dāng)時(shí),由①得,.
當(dāng)時(shí),由②得 ,用代換,得.
∴當(dāng)時(shí),,即.
在上式中分別取,并將同向不等式相加,得.
故當(dāng)且時(shí),. …………………………………………………(14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com