分析 由題意可知:n=1,a1=S1=1+1=2,當n≥2時,an=Sn-Sn-1=n2+n-(n-1)2+(n-1)=2n,則an=2n(n∈n*),$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{S}_{n}}$=$\underset{lim}{n→∞}$$\frac{2{n}^{2}}{n(n+1)}$=2$\underset{lim}{n→∞}$$\frac{1}{1+\frac{1}{n}}$=2.
解答 解:由Sn=n2+n(n∈n*),
當n=1,a1=S1=1+1=2,
當n≥2時,an=Sn-Sn-1=n2+n-(n-1)2+(n-1)=2n,
當n=1時,a1=2×1=2,成立,
∵an=2n(n∈n*),
∴$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{S}_{n}}$=$\underset{lim}{n→∞}$$\frac{2{n}^{2}}{n(n+1)}$=2$\underset{lim}{n→∞}$$\frac{1}{1+\frac{1}{n}}$=2,
∴$\underset{lim}{n→∞}$$\frac{n{a}_{n}}{{S}_{n}}$=2,
故答案為:2.
點評 本題考查求數(shù)列通項公式的方法,考查數(shù)列與極限的綜合應(yīng)用,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,$\frac{3}{4}$] | C. | (-∞,1) | D. | [$\frac{3}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-2,1) | C. | (1,4) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com