精英家教網 > 高中數學 > 題目詳情

【題目】關于函數,有下述四個結論:

是周期為的函數;

單調遞增;

上有三個零點;

的值域是

其中所有正確結論的編號是(

A.②③B.①③C.①③④D.①②④

【答案】B

【解析】

①計算,即可判斷出結果;②分,兩種情況討論,根據二次函數以及正弦函數的單調性,即可判斷出結果;③分兩種情況,分別計算零點,即可判斷出結果;④由③,只需計算出的最小值,即可判斷出結果.

①因為

所以;

因此是周期為的函數;故①正確;

②當時,,則

,則上單調遞增,所以

是開口向上,對稱軸為的二次函數,

因此上單調遞增,

所以函數上單調遞增;

時,,則,

,則上單調遞增,所以,

是開口向下,對稱軸為的二次函數,

因此上單調遞減,

所以函數上單調遞減;故②錯;

③當時,,則,

,解得:,

因此;

時,,則

,解得:,

因此;

綜上,上有三個零點,故③正確;

④由③可得,當時,,

,根據正弦函數的性質,可得:

時,,

是開口向上,對稱軸為的二次函數,

所以,

上的最小值為,故④錯.

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,曲線在點處的切線在y軸上的截距為.

1)求a;

2)討論函數的單調性;

3)設,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】指數是用體重公斤數除以身高米數的平方得出的數字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當數值大于或等于20.5時,我們說體重較重,當數值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數的數據如散點圖,請根據所得信息,完成下述列聯表,并判斷是否有的把握認為男生的身高對指數有影響.

身高較矮

身高較高

合計

體重較輕

體重較重

合計

(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數據如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據最小二乘法的思想與公式求得線性回歸方程為.利用已經求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預報變量(體重)變化的貢獻值)(保留兩位有效數字);

編號

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對于殘差的最大(絕對值)的那組數據,需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現,該組數據的體重應該為.小明重新根據最小二乘法的思想與公式,已算出,請在小明所算的基礎上求出男體育特長生的身高與體重的線性回歸方程.

參考數據:

,,,

參考公式:,,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為實現2020年全面建設小康社會,某地進行產業(yè)的升級改造.經市場調研和科學研判,準備大規(guī)模生產某高科技產品的一個核心部件,目前只有甲、乙兩種設備可以獨立生產該部件.如圖是從甲設備生產的部件中隨機抽取400件,對其核心部件的尺寸x,進行統(tǒng)計整理的頻率分布直方圖.

根據行業(yè)質量標準規(guī)定,該核心部件尺寸x滿足:|x12|≤1為一級品,1<|x12|≤2為二級品,|x12|>2為三級品.

(Ⅰ)現根據頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產品,再從所抽取的40件產品中,抽取2件尺寸x∈[12,15]的產品,記ξ為這2件產品中尺寸x∈[14,15]的產品個數,求ξ的分布列和數學期望;

(Ⅱ)將甲設備生產的產品成箱包裝出售時,需要進行檢驗.已知每箱有100件產品,每件產品的檢驗費用為50.檢驗規(guī)定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現從一箱產品中隨機抽檢了10件,結果發(fā)現有1件三級品.若將甲設備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據,問是否對該箱中剩余產品進行一一檢驗?請說明理由;

(Ⅲ)為加大升級力度,廠家需增購設備.已知這種產品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設備產品中一、二、三級品的概率分別是,.若將甲設備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據.應選購哪種設備?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】按照水果市場的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級.某商家計劃從該種植戶那里購進一批這種水果銷售.為了了解這種水果的質量等級情況,現隨機抽取了100個這種水果,統(tǒng)計得到如下直徑分布表(單位:mm):

d

等級

三級品

二級品

一級品

特級品

特級品

頻數

1

m

29

n

7

用分層抽樣的方法從其中的一級品和特級品共抽取6個,其中一級品2.

1)估計這批水果中特級品的比例;

2)已知樣本中這批水果不按等級混裝的話20個約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:

方案A:以6.5/斤收購;

方案B:以級別分裝收購,每袋20個,特級品8/袋,一級品5/袋,二級品4/袋,三級品3/.

用樣本的頻率分布估計總體分布,問哪個方案種植戶的收益更高?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數,將曲線經過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;

2)已知點是曲線上的任意一點,又直線上有兩點,且,又點的極角為,點的極角為銳角.求:

①點的極角;

面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年12月18日上午10時,在人民大會堂舉行了慶祝改革開放40周年大會.40年眾志成城,40年砥礪奮進,40年春風化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩.會后,央視媒體平臺,收到了來自全國各地的紀念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據統(tǒng)計結果,做出頻率分布直方圖如下:

(Ⅰ)求這100位作者年齡的樣本平均數和樣本方差(同一組數據用該區(qū)間的中點值作代表);

(Ⅱ)由頻率分布直方圖可以認為,作者年齡X服從正態(tài)分布,其中近似為樣本平

均數,近似為樣本方差

(i)利用該正態(tài)分布,求;

(ii)央視媒體平臺從年齡在的作者中,按照分層抽樣的方法,抽出了7人參加“紀念改革開放40年圖片展”表彰大會,現要從中選出3人作為代表發(fā)言,設這3位發(fā)言者的年齡落在區(qū)間的人數是Y,求變量Y的分布列和數學期望.附:,若,則,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若是函數的極值點,求a的值;

2)當時,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,橢圓上的點到其左焦點的最大距離為

1)求橢圓的標準方程;

2)過橢圓左焦點的直線與橢圓交于兩點,直線,過點作直線的垂線與直線交于點,求的最小值和此時直線的方程.

查看答案和解析>>

同步練習冊答案