【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時,我們說體重較重,當(dāng)數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對指數(shù)有影響.

身高較矮

身高較高

合計

體重較輕

體重較重

合計

(Ⅱ)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);

編號

1

2

3

4

5

6

7

8

體重(kg

57

58

53

61

66

57

50

66

殘差

②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.

參考數(shù)據(jù):

,,,

參考公式:,,

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

【答案】(Ⅰ)列聯(lián)表詳見解析,沒有的把握認(rèn)為男生的身高對指數(shù)有影響;(Ⅱ)殘差表詳見解析,約為0.91;

【解析】

(Ⅰ)根據(jù)散點(diǎn)圖完善列聯(lián)表,求出與表中對應(yīng)臨界值比較即可判斷;(Ⅱ)①求出編號為8的數(shù)據(jù)的殘差,相應(yīng)值代入公式計算即可;②求出,代入中即可求得,從而求得回歸方程.

(Ⅰ)

身高較矮

身高較高

合計

體重較輕

6

15

21

體重較重

6

5

11

合計

12

20

32

由于

因此沒有的把握認(rèn)為男生的身高對指數(shù)有影響.

(Ⅱ)對編號為8的數(shù)據(jù),完成殘差表如下所示:

編號

1

2

3

4

5

6

7

8

體重

57

58

53

61

66

57

50

66

殘差

0.1

0.3

0.9

3.5

所以解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻(xiàn)值約為0.91

可知,第八組數(shù)據(jù)的體重應(yīng)為58.此時,易知,,,

所以重新采集數(shù)據(jù)后,男體育特長生的身高與體重的線性回歸方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義域?yàn)?/span>的奇函數(shù),且它的最小正周期是T,已知.給出下列四個判斷:①對于給定的正整數(shù),存在,使得成立;②當(dāng)a時,對于給定的正整數(shù),存在,使得成立;③當(dāng)時,函數(shù)既有對稱軸又有對稱中心;④當(dāng)時,的值只有0.其中正確判斷的有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正三角形的邊長為2, 分別在三邊上, 的中點(diǎn),

(Ⅰ)當(dāng)時,求的大。

(Ⅱ)求的面積的最小值及使得取最小值時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四種不同顏色給圖中的A,B,C,D,E,F六個點(diǎn)涂色,要求每個點(diǎn)涂一種顏色,且圖中每條線段的兩個端點(diǎn)涂不同顏色,則不同的涂色方法用

A.288B.264C.240D.168

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點(diǎn)個數(shù);

2)若有兩個極值點(diǎn),試判斷的大小關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中中,曲線C的參數(shù)方程為參數(shù),.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

1)設(shè)P是曲線C上的一個動點(diǎn),當(dāng)時,求點(diǎn)P到直線的距離的最大值;

2)若曲線C上所有的點(diǎn)均在直線的右下方,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大時,其外接球的表面積為.則三棱錐體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下述四個結(jié)論:

是周期為的函數(shù);

單調(diào)遞增;

上有三個零點(diǎn);

的值域是

其中所有正確結(jié)論的編號是(

A.②③B.①③C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】著名物理學(xué)家李政道說:科學(xué)和藝術(shù)是不可分割的”.音樂中使用的樂音在高度上不是任意定的,它們是按照嚴(yán)格的數(shù)學(xué)方法確定的.我國明代的數(shù)學(xué)家、音樂理論家朱載填創(chuàng)立了十二平均律是第一個利用數(shù)學(xué)使音律公式化的人.十二平均律的生律法是精確規(guī)定八度的比例,把八度分成13個半音,使相鄰兩個半音之間的頻率比是常數(shù),如下表所示,其中表示這些半音的頻率,它們滿足.若某一半音與的頻率之比為,則該半音為(

頻率

半音

C

D

E

F

G

A

B

C(八度)

A.B.GC.D.A

查看答案和解析>>

同步練習(xí)冊答案