【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當三棱錐的體積最大時,其外接球的表面積為.則三棱錐體積的最大值為( )
A.B.C.D.
【答案】D
【解析】
由已知作出圖象,找出二面角的平面角,設出的長,即可求出三棱錐的高,然后利用基本不等式即可確定三棱錐體積的最大值(用含有長度的字母表示),再設出球心,由球的表面積求得半徑,根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系求得的長度,則三棱錐體積的最大值可求.
如圖所示,過點作面,垂足為,過點作交于點,連接,
則為二面角的平面角的補角,即有,
易知面,則,而△為等邊三角形,
∴為中點,
設,
則c,
故三棱錐的體積為:,
當且僅當時,體積最大,此時共線.
設三棱錐的外接球的球心為,半徑為,
由已知,,得.
過點作于F,則四邊形為矩形,
則, ,,
在△中,解得
∴三棱錐的體積的最大值為:.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】若關(guān)于x的不等式e2x﹣alnxa恒成立,則實數(shù)a的取值范圍是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點生產(chǎn)口罩、防護服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應,在國際社會上贏得一片贊譽.我國某口罩生產(chǎn)廠商在加大生產(chǎn)的同時.狠抓質(zhì)量管理,不定時抽查口罩質(zhì)量,該廠質(zhì)檢人員從某日所生產(chǎn)的口罩中隨機抽取了100個,將其質(zhì)量指標值分成以下五組:,,,,,得到如下頻率分布直方圖.
(1)規(guī)定:口罩的質(zhì)量指標值越高,說明該口罩質(zhì)量越好,其中質(zhì)量指標值低于130的為二級口罩,質(zhì)量指標值不低于130的為一級口罩.現(xiàn)從樣本口罩中利用分層抽樣的方法隨機抽取8個口罩,再從中抽取3個,記其中一級口罩個數(shù)為,求的分布列及數(shù)學期望;
(2)在2020年“五一”勞動節(jié)前,甲,乙兩人計劃同時在該型號口罩的某網(wǎng)絡購物平臺上分別參加、兩店各一個訂單“秒殺”搶購,其中每個訂單由個該型號口罩構(gòu)成.假定甲、乙兩人在、兩店訂單“秒殺”成功的概率分別為,,記甲、乙兩人搶購成功的訂單總數(shù)量、口罩總數(shù)量分別為,,
①求的分布列及數(shù)學期望;
②求當的數(shù)學期望取最大值時正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標準.對于高中男體育特長生而言,當數(shù)值大于或等于20.5時,我們說體重較重,當數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認為男生的身高對指數(shù)有影響.
身高較矮 | 身高較高 | 合計 | |
體重較輕 | |||
體重較重 | |||
合計 |
(Ⅱ)①從上述32名男體育特長生中隨機選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預報變量(體重)變化的貢獻值)(保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 58 | 53 | 61 | 66 | 57 | 50 | 66 | |
殘差 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認在樣本點的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請在小明所算的基礎上求出男體育特長生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義域為的偶函數(shù),對,有,且當時,,函數(shù).現(xiàn)給出以下命題:①是周期函數(shù);②的圖象關(guān)于直線對稱;③當時,在內(nèi)有一個零點;④當時,在上至少有六個零.其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為實現(xiàn)2020年全面建設小康社會,某地進行產(chǎn)業(yè)的升級改造.經(jīng)市場調(diào)研和科學研判,準備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個核心部件,目前只有甲、乙兩種設備可以獨立生產(chǎn)該部件.如圖是從甲設備生產(chǎn)的部件中隨機抽取400件,對其核心部件的尺寸x,進行統(tǒng)計整理的頻率分布直方圖.
根據(jù)行業(yè)質(zhì)量標準規(guī)定,該核心部件尺寸x滿足:|x﹣12|≤1為一級品,1<|x﹣12|≤2為二級品,|x﹣12|>2為三級品.
(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再從所抽取的40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個數(shù),求ξ的分布列和數(shù)學期望;
(Ⅱ)將甲設備生產(chǎn)的產(chǎn)品成箱包裝出售時,需要進行檢驗.已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗費用為50元.檢驗規(guī)定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現(xiàn)從一箱產(chǎn)品中隨機抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級品.若將甲設備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據(jù),問是否對該箱中剩余產(chǎn)品進行一一檢驗?請說明理由;
(Ⅲ)為加大升級力度,廠家需增購設備.已知這種產(chǎn)品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設備產(chǎn)品中一、二、三級品的概率分別是,,.若將甲設備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據(jù).應選購哪種設備?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】按照水果市場的需要等因素,水果種植戶把某種成熟后的水果按其直徑的大小分為不同等級.某商家計劃從該種植戶那里購進一批這種水果銷售.為了了解這種水果的質(zhì)量等級情況,現(xiàn)隨機抽取了100個這種水果,統(tǒng)計得到如下直徑分布表(單位:mm):
d | |||||
等級 | 三級品 | 二級品 | 一級品 | 特級品 | 特級品 |
頻數(shù) | 1 | m | 29 | n | 7 |
用分層抽樣的方法從其中的一級品和特級品共抽取6個,其中一級品2個.
(1)估計這批水果中特級品的比例;
(2)已知樣本中這批水果不按等級混裝的話20個約1斤,該種植戶有20000斤這種水果待售,商家提出兩種收購方案:
方案A:以6.5元/斤收購;
方案B:以級別分裝收購,每袋20個,特級品8元/袋,一級品5元/袋,二級品4元/袋,三級品3元/袋.
用樣本的頻率分布估計總體分布,問哪個方案種植戶的收益更高?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年12月18日上午10時,在人民大會堂舉行了慶祝改革開放40周年大會.40年眾志成城,40年砥礪奮進,40年春風化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩.會后,央視媒體平臺,收到了來自全國各地的紀念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如下:
(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(Ⅱ)由頻率分布直方圖可以認為,作者年齡X服從正態(tài)分布,其中近似為樣本平
均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)央視媒體平臺從年齡在和的作者中,按照分層抽樣的方法,抽出了7人參加“紀念改革開放40年圖片展”表彰大會,現(xiàn)要從中選出3人作為代表發(fā)言,設這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學期望.附:,若,則,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com