精英家教網 > 高中數學 > 題目詳情
(2013•煙臺二模)已知f(x)=
1
4
x2+sin(
π
2
+x)
,f′(x)為f(x)的導函數,則f′(x)的圖象是( 。
分析:先化簡f(x)=
1
4
x2+sin(
π
2
+x)
=
1
4
x2+cosx,再求其導數,得出導函數是奇函數,排除B,D.再根據導函數的導函數小于0的x的范圍,確定導函數(-
π
3
π
3
)上單調增減,從而排除C,即可得出正確答案.
解答:解:由f(x)=
1
4
x2+sin(
π
2
+x)
=
1
4
x2+cosx,
∴f'(x)=
1
2
x-sinx,它是一個奇函數,其圖象關于原點對稱,故排除B,D.
又f''(x)=
1
2
-cosx,當-
π
3
<x<
π
3
時,cosx>
1
2
,∴f''(x)<0,
故函數y=f'(x)在區(qū)間(-
π
3
,
π
3
)上單調遞減;
故排除C.
故選A.
點評:本題主要考查函數的單調性與其導函數的正負之間的關系,即當導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•煙臺二模)在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+S2=12.q=
S2
b2

(Ⅰ)求an與bn
(Ⅱ)設數列{cn}滿足cn=
1
Sn
,求的{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)已知二次函數f(x)=ax2+bx+c的導函數f′(x)滿足:f′(0)>0,若對任意實數x,有f(x)≥0,則
f(1)
f′(0)
的最小值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)設p:f(x)=lnx+2x2+mx+1在(0,+∞)內單調遞增,q:m≥-5,則p是q的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)將函數f(x)=3sin(4x+
π
6
)圖象上所有點的橫坐標伸長到原來的2倍,再向右平移
π
6
個單位長度,得到函數y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•煙臺二模)已知i為虛數單位,復數z=
1-2i
2-i
,則復數z的虛部是(  )

查看答案和解析>>

同步練習冊答案