【題目】如圖,三棱柱中,側面是菱形,其對角線的交點為,且, .

⑴ 求證: 平面

(2)設,若三棱錐的體積為1,求點到平面的距離.

【答案】(1)見解析(2)

【解析】試題分析

1由四邊形是菱形可得,從而可證得平面,所以.又由,可得平面.(2)設菱形的邊長為,根據(jù)條件可得,根據(jù)三棱錐的體積為1可得.進而得到, , .設點到平面的距離為,根據(jù)等積法,即由可得,即為所求的距離.

試題解析

(1)證明:∵四邊形是菱形,

,

,

平面,

平面,

, 的中點,

,

平面.

(2)設菱形的邊長為,

,

是等邊三角形,則

由(1)知,又的中點,

,

,

是等邊三角形,則

中, ,

,

解得.

中,

中, ,

設點到平面的距離為,

,

解得,

即點到平面的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是

A. yx具有正的線性相關關系

B. 回歸直線過樣本點的中心(,

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直線關于直線對稱的直線為,直線與橢圓分別交于點、、,記直線的斜率為.

(Ⅰ)求的值;

(Ⅱ)當變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標;若不恒過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)是奇函數(shù).

(1)判斷函數(shù)的奇偶性,并求實數(shù)的值;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)設,若存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有6個球,其中4個白球,2個紅球,從袋中任意取出兩球,求下列事件的概率:

(1) 取出的兩球1個是白球,另1個是紅球;

(2) 取出的兩球至少一個是白球。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任為了對本班學生的月考成績進行分析,從全班40名同學中隨機抽取一個容量為6的樣本進行分析.隨機抽取6位同學的數(shù)學、物理分數(shù)對應如表:

學生編號

1

2

3

4

5

6

數(shù)學分數(shù)x

60

70

80

85

90

95

物理分數(shù)y

72

80

88

90

85

95

(1)根據(jù)上表數(shù)據(jù)用散點圖說明物理成績y與數(shù)學成績x之間是否具有線性相關性?

(2)如果具有線性相關性,求出線性回歸方程(系數(shù)精確到0.1);如果不具有線性相關性,請說明理由.

(3)如果班里的某位同學數(shù)學成績?yōu)?0,請預測這位同學的物理成績。

(附)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中, , 分別是 的中點, 平面, 是等邊三角形, , ,.

(1)證明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,,D是BC的中點

(1)求證:平面;

2).求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的部分圖像如圖所示,將的圖象向右平移個單位長度后得到函數(shù)的圖象.

(1)求函數(shù)的解析式;

(2)在中,角A,B,C滿足,且其外接圓的半徑R=2,求的面積的最大值.

查看答案和解析>>

同步練習冊答案