【題目】為了研究55歲左右的中國人睡眠質(zhì)量與心腦血管病是否有關(guān)聯(lián),某機構(gòu)在適齡人群中隨機抽取了100萬個樣本,調(diào)查了他們每周是否至少三個晚上出現(xiàn)了三種失眠癥狀,癥狀:入睡困難;癥狀:醒得太早;癥狀:不能深度入睡或做夢,得到的調(diào)查數(shù)據(jù)如下:

數(shù)據(jù)1:出現(xiàn)癥狀人數(shù)為8.5萬,出現(xiàn)癥狀人數(shù)為9.3萬,出現(xiàn)癥狀人數(shù)為6.5萬,其中含癥狀同時出現(xiàn)1.8萬人,癥狀同時出現(xiàn)1萬人,癥狀同時出現(xiàn)2萬人,癥狀同時出現(xiàn)0.5萬人;

數(shù)據(jù)2:同時有失眠癥狀和患心腦血管病的人數(shù)為5萬人,沒有失眠癥狀且無心腦血管病的人數(shù)為73萬人.

(Ⅰ)依據(jù)上述數(shù)據(jù)試分析55歲左右的中國人患有失眠癥的比例大約多少?

(Ⅱ)根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)所填列聯(lián)表判斷能否有95%的把握說明失眠與心腦血管病存在強關(guān)聯(lián)

失眠

不失眠

合計

患心腦血管疾病

不患心腦血管疾病

合計

參考數(shù)據(jù)如下:

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

參考公式:

【答案】(Ⅰ)比例大約為20%;(Ⅱ)有95%的把握說明失眠與中風(fēng)或心臟病存在強關(guān)聯(lián)”.

【解析】

)根據(jù)題設(shè)數(shù)據(jù)得到韋恩圖各部分?jǐn)?shù)據(jù),再結(jié)合容斥原理,即得解;

)根據(jù)數(shù)據(jù)2填寫表格,利用即得解.

)設(shè){出現(xiàn)癥狀的人}、{出現(xiàn)癥狀的人}、{出現(xiàn)癥狀的人}表示有限集合元素個數(shù))

根據(jù)數(shù)據(jù)1可知,,所以

得患失眠癥總?cè)藬?shù)為20萬人,比例大約為20%

)根據(jù)數(shù)據(jù)2可得:

失眠人數(shù)(萬)

不失眠人數(shù)(萬)

患病人數(shù)(萬)

5

7

12

不患病人數(shù)(萬)

15

73

88

20

80

100

95%的把握說明失眠與中風(fēng)或心臟病存在強關(guān)聯(lián)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖統(tǒng)計了截止2019年年底中國電動車充電樁細分產(chǎn)品占比及保有量情況,關(guān)于這5次統(tǒng)計,下列說法正確的是( )

中國電動車充電樁細分產(chǎn)品占比情況:

中國電動車充電樁細分產(chǎn)品保有量情況:(單位:萬臺)

A.私人類電動汽車充電樁保有量增長率最高的年份是2018

B.公共類電動汽車充電樁保有量的中位數(shù)是25.7萬臺

C.公共類電動汽車充電樁保有量的平均數(shù)為23.12萬臺

D.2017年開始,我國私人類電動汽車充電樁占比均超過

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求曲線在點處的切線方程;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),201911月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是201911CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是(

A.CPI一籃子商品中所占權(quán)重最大的是居住

B.CPI一籃子商品中吃穿住所占權(quán)重超過50%

C.豬肉在CPI一籃子商品中所占權(quán)重約為2.5%

D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓上兩點,過點且斜率為的兩條直線與橢圓的交點分別為.

(Ⅰ)求橢圓的方程及離心率;

(Ⅱ)若四邊形為平行四邊形,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,直線為平面內(nèi)的動點,過點作直線的垂線,垂足為點,且.

(1)求動點的軌跡的方程;

(2)過點作兩條互相垂直的直線分別交軌跡四點.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐PABC的各頂點都在同一球面上,底面ABC,若,,且,則下列說法正確的是(

A.是鈍角三角形B.此球的表面積等于

C.平面PACD.三棱錐APBC的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, 相交于點,點在線段上,,且平面

(1)求實數(shù)的值;

(2)若,, 求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)min{m,n}表示mn二者中較小的一個,已知函數(shù)f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為

A.-4B.-3C.-2D.0

查看答案和解析>>

同步練習(xí)冊答案