【題目】已知為橢圓上兩點(diǎn),過(guò)點(diǎn)且斜率為的兩條直線與橢圓的交點(diǎn)分別為.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)若四邊形為平行四邊形,求的值.
【答案】(Ⅰ),離心率;(Ⅱ).
【解析】
(Ⅰ)由題列a,b方程組,即可求解橢圓方程,再由a,b,c關(guān)系,求解離心率;(Ⅱ)設(shè)直線的方程為,與橢圓聯(lián)立消去y,得x的方程,求點(diǎn)B坐標(biāo),同理求點(diǎn)C坐標(biāo),進(jìn)而得再由,得k方程求解即可
(I)由題意得解得
所以橢圓的方程為.
又,
所以離心率.
(II)設(shè)直線的方程為,
由消去,整理得.
當(dāng)時(shí),設(shè),
則,即.
將代入,整理得,所以.
所以.所以.
同理.
所以直線的斜率.
又直線的斜率,所以.
因?yàn)樗倪呅?/span>為平行四邊形,所以.
所以,解得或.
時(shí),與重合,不符合題意,舍去.
所以四邊形為平行四邊形時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,如果與都是整數(shù),就稱點(diǎn)為整點(diǎn),下列命題中正確的是_____________(寫(xiě)出所有正確命題的編號(hào))
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果與都是無(wú)理數(shù),則直線不經(jīng)過(guò)任何整點(diǎn)
③直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:與都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱的底面是等邊三角形,側(cè)面底面,是棱的中點(diǎn).
(1)求證:平面平面;
(2)求平面將該三棱柱分成上下兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放40年來(lái),體育產(chǎn)業(yè)蓬勃發(fā)展反映了“健康中國(guó)”理念的普及.下圖是我國(guó)2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長(zhǎng)率(%).
(Ⅰ)從2007年至2016年這十年中隨機(jī)選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;
(Ⅱ)從2007年至2011年這五年中隨機(jī)選出兩年,求至少有一年體育產(chǎn)業(yè)年增長(zhǎng)率超過(guò)25%的概率;
(Ⅲ)由圖判斷,從哪年開(kāi)始連續(xù)三年的體育產(chǎn)業(yè)年增長(zhǎng)率方差最大?從哪年開(kāi)始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了進(jìn)一步推動(dòng)全市學(xué)習(xí)型黨組織、學(xué)習(xí)型社會(huì)建設(shè),某市組織開(kāi)展“學(xué)習(xí)強(qiáng)國(guó)”知識(shí)測(cè)試,每人測(cè)試文化、經(jīng)濟(jì)兩個(gè)項(xiàng)目,每個(gè)項(xiàng)目滿分均為60分.從全體測(cè)試人員中隨機(jī)抽取了100人,分別統(tǒng)計(jì)他們文化、經(jīng)濟(jì)兩個(gè)項(xiàng)目的測(cè)試成績(jī),得到文化項(xiàng)目測(cè)試成績(jī)的頻數(shù)分布表和經(jīng)濟(jì)項(xiàng)目測(cè)試成績(jī)的頻率分布直方圖如下:
經(jīng)濟(jì)項(xiàng)目測(cè)試成績(jī)頻率分布直方圖
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
2 | |
3 | |
5 | |
15 | |
40 | |
35 |
文化項(xiàng)目測(cè)試成績(jī)頻數(shù)分布表
將測(cè)試人員的成績(jī)劃分為三個(gè)等級(jí)如下:分?jǐn)?shù)在區(qū)間內(nèi)為一般,分?jǐn)?shù)在區(qū)間內(nèi)為良好,分?jǐn)?shù)在區(qū)間內(nèi)為優(yōu)秀.
(1)在抽取的100人中,經(jīng)濟(jì)項(xiàng)目等級(jí)為優(yōu)秀的測(cè)試人員中女生有14人,經(jīng)濟(jì)項(xiàng)目等級(jí)為一般或良好的測(cè)試人員中女生有34人.填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為“經(jīng)濟(jì)項(xiàng)目等級(jí)為優(yōu)秀”與性別有關(guān)?
優(yōu)秀 | 一般或良好 | 合計(jì) | |
男生數(shù) | |||
女生數(shù) | |||
合計(jì) |
(2)用這100人的樣本估計(jì)總體.
(i)求該市文化項(xiàng)目測(cè)試成績(jī)中位數(shù)的估計(jì)值.
(ii)對(duì)該市文化項(xiàng)目、經(jīng)濟(jì)項(xiàng)目的學(xué)習(xí)成績(jī)進(jìn)行評(píng)價(jià).
附:
0.150 | 0.050 | 0.010 | |
2.072 | 3.841 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,,,為側(cè)棱上一點(diǎn).
(Ⅰ)若,求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)原點(diǎn),以極軸為軸的正半軸建立平面直角坐標(biāo)系,將曲線向左平移個(gè)單位長(zhǎng)度,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)保持不變,得到曲線
(1)求曲線的直角坐標(biāo)方程;
(2)已知直線的參數(shù)方程為,(為參數(shù)),點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn)和,記過(guò)點(diǎn),的直線的斜率為k,問(wèn):是否存在m,使得?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com