【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)從理工類專業(yè)的A班和文史類專業(yè)的B班各抽取20名同學(xué)參加環(huán)保知識(shí)測(cè)試.統(tǒng)計(jì)得到成績(jī)與專業(yè)的列聯(lián)表如下所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

A

14

6

20

B

7

13

20

總計(jì)

21

19

40

則下列說法正確的是 ( )

A. 有99%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)

B. 有99%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無關(guān)

C. 有95%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān)

D. 有95%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)無關(guān)

【答案】C

【解析】

根據(jù)表中的數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的計(jì)算公式,求得的值,即可得到結(jié)論.

由表中數(shù)據(jù)及公式得K2的觀測(cè)值k=≈4.912 3,

根據(jù)臨界值表可知有95%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績(jī)與專業(yè)有關(guān),故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是復(fù)平面上的四個(gè)點(diǎn),且向量對(duì)應(yīng)的復(fù)數(shù)分別為z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2為實(shí)數(shù),a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形ABC的三邊長(zhǎng)為a、bc,且其中任意兩邊長(zhǎng)均不相等.,成等差數(shù)列.1)比較的大小,并證明你的結(jié)論;(2)求證B不可能是鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜率為k的直線l經(jīng)過點(diǎn)(-1,0),且與拋物線C:y2=2px(p>0,p為常數(shù))交于不同的兩點(diǎn)M,N.當(dāng)k=時(shí),弦MN的長(zhǎng)為.

(1)求拋物線C的標(biāo)準(zhǔn)方程.

(2)過點(diǎn)M的直線交拋物線于另一點(diǎn)Q,且直線MQ經(jīng)過點(diǎn)B(1,-1),判斷直線NQ是否過定點(diǎn)?若過定點(diǎn),求出該點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}均為各項(xiàng)都不相等的數(shù)列,Sn為{an}的前n項(xiàng)和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn= ,求a4的值;
(2)若{an}是公比為q的等比數(shù)列,求證:存在實(shí)數(shù)λ,使得{bn+λ}為等比數(shù)列;
(3)若{an}的各項(xiàng)都不為零,{bn}是公差為d的等差數(shù)列,求證:a2 , a3 , …,an…成等差數(shù)列的充要條件是d=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機(jī)抽取10件,測(cè)量產(chǎn)品中某種元素的含量(單位:毫克),其測(cè)量數(shù)據(jù)的莖葉圖如圖所示.

規(guī)定:當(dāng)產(chǎn)品中此種元素的含量大于18毫克時(shí),認(rèn)定該產(chǎn)品為優(yōu)等品.

(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大小;

(2)從乙廠抽出的上述10件產(chǎn)品中隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0,1,2,3,4這五個(gè)數(shù)字,可以組成多少個(gè)滿足下列條件的沒有重復(fù)數(shù)字的五位數(shù)?

(1)4整除;

(2)21 034大的偶數(shù);

(3)左起第二、四位是奇數(shù)的偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1,2,3,4,5中隨機(jī)取出兩個(gè)不同的數(shù),則其和為奇數(shù)的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C 與y 軸交于A,B 兩點(diǎn),且|AB|=2.
(Ⅰ)求橢圓C 的方程;
(Ⅱ)設(shè)點(diǎn)P是橢圓C上的一個(gè)動(dòng)點(diǎn),且點(diǎn)P在y軸的右側(cè).直線PA,PB與直線x=4分別交于M,N兩點(diǎn).若以MN為直徑的圓與x 軸交于兩點(diǎn)E,F(xiàn),求點(diǎn)P橫坐標(biāo)的取值范圍及|EF|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案