【題目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是復平面上的四個點,且向量對應的復數(shù)分別為z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2為實數(shù),a,b的值.

【答案】(1);(2)

【解析】

(1)向量對應的復數(shù)分別為,

利用,即可得出;(2)

為實數(shù),可得,即可得出結(jié)論.

(1)∵=(a-1,-1),=(-3,b-3),

∴z1=(a-1)-i,z2=-3+(b-3)i,

∴z1+z2=(a-4)+(b-4)i=1+i,∴a-4=1,b-4=1,

解得a=b=5,

∴z1=4-i,z2=-3+2i.

(2)∵|z1+z2|=2,z1-z2為實數(shù),z1+z2=(a-4)+(b-4)i,z1-z2=(a+2)+(2-b)i,

=2,2-b=0,∴a=4,b=2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若,,cos ∠ABF=,則C的離心率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx+2在x=2處取得極值-14.

(1)求a,b的值;

(2)若f(x)≥kx在上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調(diào)性;
(2)若關(guān)于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個根,求實數(shù)m的取值范圍.
(3)求證:當x∈(0, )時,f(x)< x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,D是到原點的距離不大于1的點構(gòu)成的區(qū)域,E是滿足不等式組 的點(x,y)構(gòu)成的區(qū)域,向D中隨機投一點,則所投的點落在E中的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= 恰有2個零點,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下四個說法

已知p,q都是命題,若pq為假命題,則p,q均為假命題

命題a>b,則3a>3b-1”的否命題為ab,則3a≤3b-1”;

命題xR,x2+1≥0”的否定是x0R,+1<0”;

a≥0”x0R,a+x0+1≥0”的充分必要條件

其中正確說法的序號是 ( )

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學從理工類專業(yè)的A班和文史類專業(yè)的B班各抽取20名同學參加環(huán)保知識測試.統(tǒng)計得到成績與專業(yè)的列聯(lián)表如下所示:

優(yōu)秀

非優(yōu)秀

總計

A

14

6

20

B

7

13

20

總計

21

19

40

則下列說法正確的是 ( )

A. 有99%的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)

B. 有99%的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)

C. 有95%的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)

D. 有95%的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)

查看答案和解析>>

同步練習冊答案