【題目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是復平面上的四個點,且向量對應的復數(shù)分別為z1,z2.
(1)若z1+z2=1+i,求z1,z2;
(2)若|z1+z2|=2,z1-z2為實數(shù),求a,b的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若,,cos ∠ABF=,則C的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx+2在x=2處取得極值-14.
(1)求a,b的值;
(2)若f(x)≥kx在上恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調(diào)性;
(2)若關(guān)于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個根,求實數(shù)m的取值范圍.
(3)求證:當x∈(0, )時,f(x)< x3 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,D是到原點的距離不大于1的點構(gòu)成的區(qū)域,E是滿足不等式組 的點(x,y)構(gòu)成的區(qū)域,向D中隨機投一點,則所投的點落在E中的概率是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出如下四個說法:
①已知p,q都是命題,若p∧q為假命題,則p,q均為假命題;
②命題“若a>b,則3a>3b-1”的否命題為“若a≤b,則3a≤3b-1”;
③命題“x∈R,x2+1≥0”的否定是“x0∈R,+1<0”;
④“a≥0”是“x0∈R,a+x0+1≥0”的充分必要條件.
其中正確說法的序號是 ( )
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學從理工類專業(yè)的A班和文史類專業(yè)的B班各抽取20名同學參加環(huán)保知識測試.統(tǒng)計得到成績與專業(yè)的列聯(lián)表如下所示:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
A班 | 14 | 6 | 20 |
B班 | 7 | 13 | 20 |
總計 | 21 | 19 | 40 |
則下列說法正確的是 ( )
A. 有99%的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)
B. 有99%的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)
C. 有95%的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)
D. 有95%的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com