【題目】已知直線l方程為(m+2)x-(m+1)y-3m-7=0,m∈R.
(Ⅰ)求證:直線l恒過定點P,并求出定點P的坐標;
(Ⅱ)若直線l在x軸,y軸上的截距相等,求直線l的方程.
【答案】(Ⅰ)直線l恒過定點P(4,1).(Ⅱ)x +y-5=0或
【解析】
(Ⅰ)整理直線的方程得m(x-y-3)+2x-y-7=0,令,解方程組即可求得定點P的坐標。
(Ⅱ)令,求得直線l的縱截距,再令,求得直線l的橫截距,由題意列方程即可求得的值,問題得解。
解:(Ⅰ)直線l方程為(m+2)x-(m+1)y-3m-7=0,m∈R,即m(x-y-3)+2x-y-7=0,
令x-y-3=0,可得2x-y-7=0,聯(lián)立方程組求得,可得直線l恒過定點P(4,1).
(Ⅱ)直線l在x軸,y軸上的截距相等,
令x=0,求得y=-;令y=0,求得,
∴-=,解得:m=-或,
∴直線l方程為x+y-=0或,即x +y-5=0或
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點.(1)若為橢圓上兩點,且線段的中點為,求直線的斜率;
(2)若過橢圓的右焦點作兩條互相垂直的直線分別交橢圓于和,設線段的長分別為,證明是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某貧困地區(qū)截至2018年底,按照農(nóng)村家庭人均年純收入8000元的小康標準,該地區(qū)僅剩部分家庭尚未實現(xiàn)小康.現(xiàn)從這些尚未實現(xiàn)小康的家庭中隨機抽取50戶,得到這50戶家庭2018年的家庭人均年純收入的頻率分布直方圖.
(1)補全頻率分布直方圖,并求出這50戶家庭人均年純收入的中位數(shù)和平均數(shù)(精確到元);
(2)2019年7月,為估計該地能否在2020年全面實現(xiàn)小康,統(tǒng)計了該地當時最貧困的一個家庭2019年1至6月的人均月純收入如表:
月份/2019(時間代碼) | 1 | 2 | 3 | 4 | 5 | 6 |
人居月純收入 (元) | 275 | 365 | 415 | 450 | 470 | 485 |
由散點圖及相關性分析發(fā)現(xiàn):家庭人均月純收入與時間代碼之間具有較強的線性相關關系,請求出回歸直線方程;并由此估計該家庭2020年1月的家庭人均月純收入.
①可能用到的數(shù)據(jù):;
②參考公式:線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電力公司在工程招標中是根據(jù)技術、商務、報價三項評分標準進行綜合評分的,按照綜合得分的高低進行綜合排序,綜合排序高者中標。分值權重表如下:
總分 | 技術 | 商務 | 報價 |
100% | 50% | 10% | 40% |
技術標、商務標基本都是由公司的技術、資質、資信等實力來決定的。報價表則相對靈活,報價標的評分方法是:基準價的基準分是68分,若報價每高于基準價1%,則在基準分的基礎上扣0.8分,最低得分48分;若報價每低于基準價1%,則在基準分的基礎上加0.8分,最高得分為80分。若報價低于基準價15%以上(不含15%)每再低1%,在80分在基礎上扣0.8分。在某次招標中,若基準價為1000(萬元)。甲、乙兩公司綜合得分如下表:
公司 | 技術 | 商務 | 報價 |
甲 | 80分 | 90分 | 分 |
乙 | 70分 | 100分 | 分 |
甲公司報價為1100(萬元),乙公司的報價為800(萬元)則甲,乙公司的綜合得分,分別是
A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】意大利數(shù)學家列昂納多·斐波那契是第一個研究了印度和阿拉伯數(shù)學理論的歐洲人,斐波那契數(shù)列被譽為是最美的數(shù)列,斐波那契數(shù)列滿足:,,.若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前項所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結論正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,三點中恰有二點在橢圓上,且離心率為。
(1)求橢圓的方程;
(2)設為橢圓上任一點, 為橢圓的左右頂點, 為中點,求證:直線與直線它們的斜率之積為定值;
(3)若橢圓的右焦點為,過的直線與橢圓交于,求證:直線與直線斜率之和為定值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,C是圓O上一點,AC=BC,且PA⊥平面ABC,E是AC的中點,F是PB的中點,PA=,AB=2.求:
(Ⅰ)異面直線EF與BC所成的角;
(Ⅱ)點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調區(qū)間;
(2)是否存在實數(shù),使得至少有一個,使成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,,離心率為,且橢圓四個頂點構成的菱形面積為.
(1)求橢圓C的方程;
(2)若直線l :y=x+m與橢圓C交于M,N兩點,以MN為底邊作等腰三角形,頂點為P(3,-2),求m的值及△PMN的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com