【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使得至少有一個(gè),使成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
【答案】(1)單調(diào)遞增區(qū)間為和,單調(diào)減區(qū)間為;(2)答案見解析.
【解析】試題分析: 求得函數(shù)f(x)的定義域,求導(dǎo)函數(shù),對(duì)a討論,利用導(dǎo)數(shù)的正負(fù),即可確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)先考慮“至少有一個(gè),使成立”的否定“, 恒成立”.即可轉(zhuǎn)化為a+(a+1)xlnx≥0恒成立,令φ(x)=a+(a+1)xlnx,則只需φ(x)≥0在x∈(0,+∞)恒成立即可.
試題解析:
(1)函數(shù)的定義域?yàn)?/span>,
1)當(dāng)時(shí),由得, 或,由得,
故函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)減區(qū)間為
2)當(dāng)時(shí), , 的單調(diào)增區(qū)間為
(2)先考慮“至少有一個(gè),使成立”的否定“, 恒成立”.
即可轉(zhuǎn)化為恒成立.
令,則只需在恒成立即可,
,
當(dāng)時(shí),在時(shí), ,在時(shí),
的最小值為,由得,
故當(dāng)時(shí), 恒成立,
當(dāng)時(shí), , 在不能恒成立,
當(dāng)時(shí),取,有, 在不能恒成立,
綜上所述,即時(shí),至少有一個(gè),使成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如下:
方式 | 實(shí)施地點(diǎn) | 大雨 | 中雨 | 小雨 | 模擬實(shí)驗(yàn)總次數(shù) |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬實(shí)驗(yàn)的統(tǒng)計(jì)數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只要是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和均值E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l方程為(m+2)x-(m+1)y-3m-7=0,m∈R.
(Ⅰ)求證:直線l恒過(guò)定點(diǎn)P,并求出定點(diǎn)P的坐標(biāo);
(Ⅱ)若直線l在x軸,y軸上的截距相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( )
A. 若該大學(xué)某女生身高為170cm,則可斷定其體重必為
B. 回歸直線過(guò)樣本點(diǎn)的中心
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加
D. y與x具有正的線性相關(guān)關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某印刷廠為了研究單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到0.1);
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為10千冊(cè),若印刷廠以每?jī)?cè)5元的價(jià)格將書籍出售給訂貨商,求印刷廠二次印刷10千冊(cè)獲得的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是橢圓上的一點(diǎn),從原點(diǎn)向圓作兩條切線,分別交橢圓于點(diǎn).
(1)若點(diǎn)在第一象限,且直線互相垂直,求圓的方程;
(2)若直線的斜率存在,并記為,求的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生參加體育活動(dòng)的情況,學(xué)校對(duì)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,其中一個(gè)問(wèn)題是“你平均每天參加體育活動(dòng)的時(shí)間是多少?”,共有4個(gè)選項(xiàng):A,1.5小時(shí)以上,B,1-1.5小時(shí),C,0.5-1小時(shí),D,0.5小時(shí)以下.圖(1),(2)是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答以下問(wèn)題:
(1)本次一共調(diào)查了多少名學(xué)生.
(2)在圖(1)中將對(duì)應(yīng)的部分補(bǔ)充完整.
(3)若該校有3000名學(xué)生,你估計(jì)全校有多少名學(xué)生平均每天參加體育活動(dòng)的時(shí)間在0.5小時(shí)以下?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1)所示,橢圓的中心在原點(diǎn),焦點(diǎn)F1、F2在x軸上,A、B是橢圓的頂點(diǎn),P是橢圓上一點(diǎn),且PF1⊥x軸,PF2∥AB,求此橢圓的離心率;
(2)如圖(2)所示,雙曲線的一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果直線FB與該雙曲線的一條漸近線垂直,求此雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】質(zhì)檢部門對(duì)某工廠甲、乙兩個(gè)車間生產(chǎn)的個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)克的為合格.
(1)質(zhì)檢部門從甲車間個(gè)零件中隨機(jī)抽取件進(jìn)行檢測(cè),若至少件合格,檢測(cè)即可通過(guò),若至少件合格,檢測(cè)即為良好,求甲車間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;
(2)若從甲、乙兩車間個(gè)零件中隨機(jī)抽取個(gè)零件,用表示乙車間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com