11.若一條直線過A(1,3)、B(2,5)兩點,則此直線的斜率為( 。
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

分析 根據(jù)兩點坐標求出直線l的斜率即可.

解答 解:直線過A(1,3)、B(2,5)兩點,則此直線的斜率為k=$\frac{5-3}{2-1}$=2,
故選C.

點評 此題考查學生會根據(jù)兩點坐標求過兩點直線的斜率,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|
(1)解不等式:f(x+1)+f(x+3)<4;
(2)已知a>2,求證:?x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.與橢圓$C:\frac{x^2}{9}+\frac{y^2}{5}=1$共焦點且過點$P(3,\sqrt{2})$的雙曲線方程為(  )
A.${x^2}-\frac{y^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$C.$\frac{x^2}{2}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在扇形AOB中,∠AOB=2,且弦AB=2,則扇形AOB的面積為( 。
A.$\frac{2}{sin2}$B.$\frac{1}{si{n}^{2}1}$C.$\frac{1}{2si{n}^{2}2}$D.2sin1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知m,n∈R,則“mn<0”是“拋物線mx2+ny=0的焦點在y軸正半軸上”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設a,b,c∈R,且a>b,則( 。
A.ac>bcB.a-c<b-cC.a2>b2D.a3>b3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,已知sinA:sinB:sinC=3:2:4,那么cosC=( 。
A.-$\frac{1}{4}$B.-$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命題“?t∈R,A∩B=∅”是真命題,則實數(shù)a的取值范圍是(  )
A.(-∞,0)∪($\frac{4}{3}$,+∞)B.(0,$\frac{4}{3}$]C.[0,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知$f(x)={log_{0.5}}({x^2}-mx-m)$.
(1)若函數(shù)f(x)的定義域為R,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間$(-2,-\frac{1}{2})$上是遞增的,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案