精英家教網 > 高中數學 > 題目詳情

如圖,點A、BC在數軸上,點B、C關于點A對稱,若點A、B對應的實數分別是和-1,則點C所對應的實數是

A. B. C. D.

D

解析試題分析:因為BC關于點A對稱,所以ABC的中點,根據中點坐標公式可以得C對應的實數為
考點:本小題主要考查中點坐標公式的應用.
點評:中的坐標公式的應用十分廣泛,要靈活準確應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:單選題

若橢圓mx2 + ny2 = 1與直線x+y-1=0交于A、B兩點,過原點與線段AB中點的直線的斜率為,則=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

設A、B為雙曲線同一條漸近線上的兩個不同的點,已知向量=(1,0),,則雙曲線的離心率e等于
A.2    B.    C.2或  D. 2或

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知點是雙曲線的左焦點,點是該雙曲線的右頂點,過且垂直于軸的直線與雙曲線交于、兩點,若是銳角三角形,則該雙曲線的離心率的取值范圍是(   ).

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為(    )

A. B. C. D. 

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知雙曲線的中心為原點,的焦點,過的直線相交于兩點,且的中點為,則的方程為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知橢圓上的一點到橢圓一個焦點的距離為,則到另一焦點距離為

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知橢圓上的一點P,到橢圓一個焦點的距離為3,則P到另一焦點距離為(    )

A.2B.3C.5D.7

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知雙曲線的漸近線為,焦點坐標為(-4,0),(4,0),則雙曲線方程為(   )

A.B.C.D.

查看答案和解析>>

同步練習冊答案