【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,抽獎方法是:從裝有2個紅球1個白球的甲箱與裝有2個紅球2個白球的乙箱中,各隨機摸出1個球,若摸出的2個球都是紅球則中獎,否則不中獎.

)用球的標號列出所有可能的摸出結(jié)果;

)有人認為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率,你認為正確嗎?請說明理由.

【答案】

)說法不正確;

【解析】

試題()利用列舉法列出所有可能的結(jié)果即可;()在()中摸出的2個球都是紅球的結(jié)果數(shù),然后利用古典概率公式計算即可得到其對應(yīng)的概率,中獎概率大于不中獎概率是錯誤的;

試題解析:()所有可能的摸出結(jié)果是:

)不正確,理由如下:

由()知,所有可能的摸出結(jié)果共12種,其中摸出的2個球都是紅球的結(jié)果為4種,所以中獎的概率為,不中獎的概率為,故這種說法不正確.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中小學生的視力狀況受到社會的廣泛關(guān)注,某市有關(guān)部門從全市6萬名高一學生中隨機抽取了400名,對他們的視力狀況進行一次調(diào)查統(tǒng)計,將所得到的有關(guān)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.從左至右五個小組的頻率之比依次是.

1)抽取的400名學生中視力在范圍內(nèi)的學生約有多少人?

2)如果視力達到5.0以上算正常,用樣本估計總體,求全市高一學生中視力正常的學生有多少人?

3)從第4組和第5組的學生中按分層抽樣的方式抽取樣本容量為8人的樣本,再從樣本中隨機抽取2人進行問卷調(diào)查,請求出2人來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選出了三個科目作為選考科目若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇物理、化學和生物三個選考科目,則學生甲的選考方案確定,“物理、化學和生物為其選考方案.

某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

試估計該學校高一年級確定選考生物的學生有多少人?

寫出選考方案確定的男生中選擇物理、化學和地理的人數(shù)(直接寫出結(jié)果)

從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從集合中任取三個不同的元素作為直線的值,若直線傾斜角小于,且軸上的截距小于,那么不同的直線條數(shù)有( )

A. 109B. 110C. 111D. 120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)e為自然對數(shù)的底數(shù))

1)求的最小值;

2)若對于任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表數(shù)據(jù)為某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)及對應(yīng)銷售價格(單位:千元/噸).

1

2

3

4

5

70

65

55

38

22

1)若有較強的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)若該農(nóng)產(chǎn)品每噸的成本為13.1千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,利用上問所求的回歸方程,預(yù)測當年產(chǎn)量為多少噸時,年利潤最大?

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, ,則對此不等式描敘正

確的是( )

A. 至少存在一個以為邊長的等邊三角形

B. ,則對任意滿足不等式的都存在為邊長的三角形

C. ,則對任意滿足不等式的都存在為邊長的三角形

D. ,則對滿足不等式的不存在為邊長的直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個零點,求的取值范圍;

(Ⅱ)證明:當時,關(guān)于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點是圓 上的任意一點,點與點的連線段的垂直平分線和相交于點.

(I)求點的軌跡方程;

(II)過坐標原點的直線交軌跡于點 兩點,直線與坐標軸不重合. 是軌跡上的一點,若的面積是4,試問直線, 的斜率之積是否為定值,若是,求出此定值,否則,說明理由.

查看答案和解析>>

同步練習冊答案