【題目】已知動點是圓: 上的任意一點,點與點的連線段的垂直平分線和相交于點.
(I)求點的軌跡方程;
(II)過坐標原點的直線交軌跡于點, 兩點,直線與坐標軸不重合. 是軌跡上的一點,若的面積是4,試問直線, 的斜率之積是否為定值,若是,求出此定值,否則,說明理由.
【答案】(1) (2) 直線, 的斜率之積是定值
【解析】試題分析:(I)由題意得,利用橢圓的定義,得點的軌跡是以、為焦點的橢圓,進而得到橢圓的方程;
(II)設(shè)直線的方程為,聯(lián)立發(fā)出來,求解,設(shè)所在直線方程為,聯(lián)立橢圓方程得的坐標,再求得點到直線的距離,根據(jù)面積列出方程,得到的方程,即可求解的值.
試題解析:
(I)由題意, ,又∵
∴,
∴點的軌跡是以、為焦點的橢圓,其中,
∴橢圓的方程為.
(II)設(shè)直線的方程為,聯(lián)立,得
∴
設(shè)所在直線方程為,聯(lián)立橢圓方程得或,
點到直線的距離.
∴,
即,解得,
∴直線, 的斜率之積是定值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,抽獎方法是:從裝有2個紅球和1個白球的甲箱與裝有2個紅球和2個白球的乙箱中,各隨機摸出1個球,若摸出的2個球都是紅球則中獎,否則不中獎.
(Ⅰ)用球的標號列出所有可能的摸出結(jié)果;
(Ⅱ)有人認為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率,你認為正確嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:PQ⊥平面DCQ;
(II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的四棱錐中,底面與側(cè)面垂直,且四邊形為正方形, ,點為邊的中點,點在邊上,且,過, , 三點的截面與平面的交線為,則異面直線與所成的角為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,其中i為虛數(shù)單位,當(dāng)實數(shù)m取何值時,復(fù)數(shù)z對應(yīng)的點:
(1)位于虛軸上;
(2)位于一、三象限;
(3)位于以原點為圓心,以4為半徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線恒過定點.
(Ⅰ)若直線經(jīng)過點且與直線垂直,求直線的方程;
(Ⅱ)若直線經(jīng)過點且坐標原點到直線的距離等于3,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線經(jīng)過拋物線的焦點,且垂直于拋物線的對稱軸,與拋物線兩交點間的距離為4.
(1)求拋物線的方程;
(2)已知,過的直線與拋物線相交于兩點,設(shè)直線與的斜率分別為和,求證:為定值,并求出定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)線性回歸分析的四個命題:
①線性回歸直線必過樣本數(shù)據(jù)的中心點();
②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;
③當(dāng)相關(guān)性系數(shù)時,兩個變量正相關(guān);
④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)就越接近于.
其中真命題的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年出現(xiàn)各種食品問題,食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病.為了解三高疾病是否與性別有關(guān),醫(yī)院隨機對入院的60人進行了問卷調(diào)查,得到了如下的列聯(lián)表:
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
(1)請將如圖的列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?
(2)為了研究三高疾病是否與性別有關(guān),請計算出統(tǒng)計量,并說明你有多大的把握認為三高疾病與性別有關(guān)?
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com