【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1, ,若邊BC上一點D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為

【答案】
【解析】解:∵△ABC的外接圓半徑R為1, , ∴由正弦定理 ,
可得:sinA= ,
∵邊BC上一點D滿足BD=2DC,
且∠BAD=90°,
∴A=120°,∠CAD=30°,
BD= a= ,CD= a=
∴如圖,由正弦定理可得: ,可得:b= sin∠2= sin∠1= =c,
∴△BAC是等腰三角形,底角是30°,
∴sinB= ,可得:c=1,
∴SABC= =
所以答案是:

【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0 , 2 )(x0 )是拋物線C上一點.圓M與線段MF相交于點A,且被直線x= 截得的弦長為 |MA|.若 =2,則|AF|等于( )
A.
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若﹣1<x<1時,均有f(x)≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構(gòu)的滿意率分別如圖1和圖2所示,為了解該小區(qū)戶主對戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取20%的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為(
A.100,8
B.80,20
C.100,20
D.80,8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓C: + =1(a>b>0)的左、右焦點分別為F1、F2 , 上頂點為A,過A與AF2垂直的直線交x軸負半軸于Q點,且F1恰好是線段QF2的中點.
(1)若過A、Q、F2三點的圓恰好與直線3x﹣4y﹣7=0相切,求橢圓C的方程;
(2)在(1)的條件下,B是橢圓C的左頂點,過點R( ,0)作與x軸不重合的直線l交橢圓C于E、F兩點,直線BE、BF分別交直線x= 于M、N兩點,若直線MR、NR的斜率分別為k1 , k2 , 試問:k1k2是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+ax2+bcosx在點 處的切線方程為
(Ⅰ)求a,b的值,并討論f(x)在 上的增減性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求證:
(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B.
(I)求角A;
(Ⅱ)若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在三棱錐P﹣ABC中,VPABC= ,∠APC= ,∠BPC= ,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P﹣ABC外接球的體積為

查看答案和解析>>

同步練習冊答案