若log155=m,則log153=
 
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)對數(shù)的運(yùn)算性質(zhì),根據(jù)log153=log15
15
5
)=log1515-log155,可得:log153的值.
解答: 解:∵log155=m,
∴l(xiāng)og153=log15
15
5
)=log1515-log155=1-m,
故答案為:1-m
點(diǎn)評:本題對數(shù)的運(yùn)算性質(zhì),熟練掌握對數(shù)的運(yùn)算性質(zhì),并能準(zhǔn)確分析出已知式與未知式中真數(shù)與真數(shù),真數(shù)與底數(shù)的關(guān)系,是解答的關(guān)鍵,本題是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用f(n)表示自然數(shù)n的各位數(shù)字的和,如f(20)=2+0=2,f(2009)=2+0+0+9=11,對任意的自然數(shù)n,都有n+f(n)≠x,則滿足這個(gè)條件的最大的兩位數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x-2,x∈{-1,1,2,則f(x)的值域?yàn)?div id="piywrqt" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)閇a,b],其圖象如圖,則f(|x|)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β為銳角,sinα=x,cosβ=y,cos(α+β)=-
3
5
,則x與y的關(guān)系式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(diǎn)(0,1)和(1,4),且對于任意的實(shí)數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達(dá)式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)設(shè)g(x)=kx+1,若G(x)=
g(x)-f(x)
在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:
①函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必經(jīng)過定點(diǎn)(0,1);
②已知命題p:?x∈R,sinx≤1,則¬p:?x0∈R,sinx0≤1;
③過點(diǎn)(-1,2)且與直線2x-3y+4=0垂直的直線方程為3x+2y-1=0;
④圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9相切.
其中所有正確命題的序號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(
1
27
)
1
3
-(6
1
4
)
1
2
+(2
2
)-
2
3
0-3-1
(2)已知x+x-1=4(0<x<1),求
x2-x-2
x
1
2
+x-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+(a2-4a+1)x+2在區(qū)間(-∞,1]上是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案