【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)發(fā)權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)如表:

(參考公式和計(jì)算結(jié)果: , ,

(1)1~6號(hào)井位置線性分布,借助前5組數(shù)據(jù)(坐標(biāo))求得回歸直線方程為,的值,并估計(jì)的預(yù)報(bào)值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)13,5,7號(hào)并計(jì)算出的( 精確到0.01),設(shè) ,當(dāng)均不超過(guò)10%時(shí),使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

【答案】(1)答案見(jiàn)解析;(2)使用位置最接近的已有舊井.(3)答案見(jiàn)解析.

【解析】試題分析:

(1)根據(jù)表中的數(shù)據(jù),求得,得到樣本中心,代入回歸方程,即可求解,得出回歸方程,再代入時(shí),求得的值即可;

(2)代入公式,求得的值,求得的值,即可作出結(jié)論;

(3)由題意,得出優(yōu)質(zhì)井和非優(yōu)質(zhì)井,進(jìn)而得到的取值,求得隨機(jī)變量的分別列,求解期望即可.

試題解析:

(1)因?yàn)?/span> .

回歸直線必過(guò)樣本中心點(diǎn),則.

故回歸直線方程為,

當(dāng)時(shí), ,即的預(yù)報(bào)值為24.

(2)因?yàn)?/span> , , ,

所以

,

, , ., ,均不超過(guò)10%,因此使用位置最接近的已有舊井.

(3)由題意,1,3,5,6這4口井是優(yōu)質(zhì)井,2,4這兩口井是非優(yōu)質(zhì)井,

所以勘察優(yōu)質(zhì)井?dāng)?shù)的可能取值為2,3,4,

, ,

.

X

2

3

4

P

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c. (Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x2+x+m)ex(其中m∈R,e為自然對(duì)數(shù)的底數(shù)).若在x=﹣3處函數(shù)f (x)有極大值,則函數(shù)f (x)的極小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和Sn , 且a3=7,S11=143, (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2 +2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0 , a1 , a2成等差數(shù)列.
(1)求(x+2)n展開(kāi)式的中間項(xiàng);
(2)求(x+2)n展開(kāi)式所有含x奇次冪的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=2,C=
(1)若b= ,求角B;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次考試中,五位學(xué)生的數(shù)學(xué),物理成績(jī)?nèi)缦卤硭荆?/span>

(1)要從5名學(xué)生中選2人參加一項(xiàng)活動(dòng),求選中的學(xué)生中至少有一人的物理成績(jī)高于90分的概率;

(2)根據(jù)上表數(shù)據(jù),畫(huà)出散點(diǎn)圖并用散點(diǎn)圖說(shuō)明物理成績(jī)與數(shù)學(xué)成績(jī)之間線性相關(guān)關(guān)系的強(qiáng)弱,如果具有較強(qiáng)的線性相關(guān)關(guān)系,求的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,請(qǐng)說(shuō)明理由.

參考公式:

回歸直線的方程是,其中, ,

是與對(duì)應(yīng)的回歸估計(jì)值,

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)為2的線段A B兩端點(diǎn)A和B分別在x軸和y軸上滑動(dòng),線段AB的中點(diǎn)M的軌跡為曲線C. (Ⅰ)求曲線C的方程;
(Ⅱ)點(diǎn)P(x,y)是曲線C上的動(dòng)點(diǎn),求3x﹣4y的取值范圍;
(Ⅲ)已知定點(diǎn)Q(0, ),探究是否存在定點(diǎn)T(0,t)(t )和常數(shù)λ滿足:對(duì)曲線C上任意一點(diǎn)S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的頻率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績(jī)?cè)?0~70分的頻率是多少;
(2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少;
(3)求成績(jī)?cè)?0~100分的學(xué)生人數(shù)是多少.

查看答案和解析>>

同步練習(xí)冊(cè)答案