【題目】設(shè)(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0 , a1 , a2成等差數(shù)列.
(1)求(x+2)n展開式的中間項(xiàng);
(2)求(x+2)n展開式所有含x奇次冪的系數(shù)和.

【答案】
(1)解: ,∴ ,

∵a0,a1,a2成等差數(shù)列,∴

解得:n=8或n=1(舍去)

∴(x+2)n展開式的中間項(xiàng)是


(2)解:在 中,

令x=1,則38=a0+a1+a2+a3+…+a7+a8

令x=﹣1,則1=a0﹣a1+a2﹣a3+…﹣a7+a8

兩式相減得:


【解析】(1)利用通項(xiàng)公式及其a0 , a1 , a2成等差數(shù)列.可得n.進(jìn)而得出.(2)在 中,分別令令x=1,x=﹣1,即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在單調(diào)遞增數(shù)列{an}中,a1=2,a2=4,且a2n1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,…. (Ⅰ)(。┣笞C:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)設(shè)數(shù)列 的前n項(xiàng)和為Sn , 證明:Sn ,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,設(shè)向量 =(a,c), =(cosC,cosA).
(1)若 ,a= c,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若acosA=bsinb,且 ,則sinA+sinC的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無(wú)重復(fù)數(shù)字的五位數(shù)a1a2a3a4a5中,若a1<a2 , a2>a3 , a3<a4 , a4>a5時(shí)稱為波形數(shù),如89674就是一個(gè)波形數(shù),由1,2,3,4,5組成一個(gè)沒有重復(fù)數(shù)字的五位數(shù)是波形數(shù)的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開發(fā)權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:

(參考公式和計(jì)算結(jié)果: , , ,

(1)1~6號(hào)井位置線性分布,借助前5組數(shù)據(jù)(坐標(biāo))求得回歸直線方程為的值,并估計(jì)的預(yù)報(bào)值;

(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號(hào)并計(jì)算出的(, 精確到0.01),設(shè), 當(dāng)均不超過10%時(shí),使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?

(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
(1)求角A的大;
(2)若a= ,cosB= ,D為AC的中點(diǎn),求BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為曲線上兩點(diǎn), 的橫坐標(biāo)之和為2.

1)求直線的斜率;

(2)設(shè)為曲線上一點(diǎn),曲線在點(diǎn)處的切線與直線平行,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校學(xué)生總數(shù)為8000人,其中一年級(jí)1600人,二年級(jí)3200人,三年級(jí)2000人,四年級(jí)1200人.為了完成一項(xiàng)調(diào)查,決定采用分層抽樣的方法,從中抽取容量為400的樣本.
(1)各個(gè)年級(jí)分別抽取了多少人?
(2)若高校教職工有505人,需要抽取50個(gè)樣本,你會(huì)采用哪種抽樣方法,請(qǐng)寫出具體抽樣過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案