【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若acosA=bsinb,且 ,則sinA+sinC的最大值是

【答案】
【解析】解:∵acosA=bsinA,∴ , 又由正弦定理得
∴sinB=cosA=sin( ﹣A),
∵B>
∴π﹣B= ﹣A.
∴B=A+
∴C=π﹣A﹣B= ﹣2A.
∴sinA+sinC=sinA+cos2A=﹣2sin2A+sinA+1=﹣2(sinA﹣ 2+
∵0<A< ,0< ﹣2A< ,
∴0<A< ,
∴0<sinA<
∴當sinA= 時,sinA+sinC取得最大值
所以答案是:
【考點精析】關于本題考查的正弦定理的定義,需要了解正弦定理:才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x∈[1,2],x2﹣a≥0;命題q:x0∈R,使得 +(a﹣1)x0+1<0.若“p或q”為真,“p且q”為假,則實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:m∈{x|x2+(a﹣8)x﹣8a≤0},命題q:方程 =1表示焦點在x軸上的雙曲線.
(1)若當a=1時,命題p∧q假命題,p∨q”為真命題,求實數(shù)m的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+x+m)ex(其中m∈R,e為自然對數(shù)的底數(shù)).若在x=﹣3處函數(shù)f (x)有極大值,則函數(shù)f (x)的極小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(其中 )的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象(
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和Sn , 且a3=7,S11=143, (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=2 +2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0 , a1 , a2成等差數(shù)列.
(1)求(x+2)n展開式的中間項;
(2)求(x+2)n展開式所有含x奇次冪的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次考試中,五位學生的數(shù)學,物理成績?nèi)缦卤硭荆?/span>

(1)要從5名學生中選2人參加一項活動,求選中的學生中至少有一人的物理成績高于90分的概率;

(2)根據(jù)上表數(shù)據(jù),畫出散點圖并用散點圖說明物理成績與數(shù)學成績之間線性相關關系的強弱,如果具有較強的線性相關關系,求的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關關系,請說明理由.

參考公式:

回歸直線的方程是其中, ,

是與對應的回歸估計值,

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當且僅當n=9時,數(shù)列{an}的前n項和Sn取得最大值,求該數(shù)列首項a1的取值范圍(
A.( ,
B.[ ]
C.( ,
D.[ , ]

查看答案和解析>>

同步練習冊答案