【題目】已知函數(shù)f(x)=sinωxcosωx+ cos2ωx﹣ (ω>0),直線x=x1 , x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1﹣x2|的最小值為
(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,若關于x的方程g(x)+k=0,在區(qū)間 上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

【答案】
(1)解: ,由題意知,最小正周期 ,又 ,所以ω=2,

.)


(2)解:將f(x)的圖象向右平移個 個單位后,得到 y= = 的圖象,

再將所得圖象所有點的橫坐標伸長到原來的2倍,縱坐標不變,得到 的圖象,

,∵ ,∴ ,g(x)+k=0,在區(qū)間 上有且只有一個實數(shù)解,

即函數(shù)y=g(x)與y=﹣k在區(qū)間 上有且只有一個交點,由正弦函數(shù)的圖象可知 或﹣k=1

,或k=﹣1


【解析】(1)利用三角函數(shù)的恒等變換把函數(shù)f(x)的解析式化為 ,根據(jù)周期求出ω=2,從而得到 .(2)將f(x)的圖象向右平移個 個單位后,得到 y= = 的圖象,再將所得圖象所有點的橫坐標伸長到原來的2倍得到 的圖象,可得 ,函數(shù)y=g(x)與y=﹣k在區(qū)間 上有且只有一個交點,由正弦函數(shù)的圖象可得實數(shù)k的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某縣城出租車的收費標準是:起步價是元(乘車不超過千米);行駛千米后,每千米車費1.2元;行駛千米后,每千米車費1.8元.

(1)寫出車費與路程的關系式;

(2)一顧客計劃行程千米,為了省錢,他設計了三種乘車方案:

①不換車:乘一輛出租車行千米;

②分兩段乘車:先乘一輛車行千米,換乘另一輛車再行千米;

③分三段乘車:每乘千米換一次車.

問哪一種方案最省錢.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E的中心在坐標原點,焦點在x軸上,離心率為 ,且橢圓E上一點到兩個焦點距離之和為4;l1 , l2是過點P(0,2)且互相垂直的兩條直線,l1交E于A,B兩點,l2交E交C,D兩點,AB,CD的中點分別為M,N.
(1)求橢圓E的方程;
(2)求l1的斜率k的取值范圍;
(3)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系;
(1)設M(x,y)是圓C上的動點,求m=3x+4y的取值范圍;
(2)求圓C的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BC=2, , ,若 ,則 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,則滿足f(f(a))=2fa的a的取值范圍是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三條直線3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0圍成直角三角形,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)上購物逐步走進大學生活,某大學學生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(1)求這4人中恰有1人去淘寶網(wǎng)購物的概率;
(2)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題方程表示雙曲線;命題不等式的解集是. 為假 為真,的取值范圍.

【答案】

【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.

試題解析:

范圍為

型】解答
束】
18

【題目】如圖,設是圓上的動點,軸上的投影, 上一點,.

1)當在圓上運動時求點的軌跡的方程;

2)求過點且斜率為的直線被所截線段的長度.

查看答案和解析>>

同步練習冊答案