【題目】已知函數(shù),則下列命題中正確命題的個數(shù)是( )
①函數(shù)在上為周期函數(shù)
②函數(shù)在區(qū)間,上單調(diào)遞增
③函數(shù)在()取到最大值,且無最小值
④若方程()有且僅有兩個不同的實根,則
A.個B.個C.個D.個
【答案】B
【解析】
作出的圖像,由圖像對各選項進行判斷即可.時,,可由的圖像作關(guān)于軸的對稱圖像,再向上平移一個單位得到.當時,故是周期為的周期函數(shù),圖像可由時,向右平移一個單位得到,根據(jù)周期函數(shù)的性質(zhì)即可得到圖像.
的圖像如圖所示:
對于①,因為,,可得所以函數(shù)在上不是周期函數(shù),故①不正確;
對于②,當,結(jié)合函數(shù)圖像可知,函數(shù)在區(qū)間,上單調(diào)遞增,故②正確;
對于③,因為時,,不是最大值, 故③不正確;
對于④,如圖所示,
圖中兩條曲線對應(yīng)的分別為和,故方程為,有且只有兩個實根,則 ,故④正確.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我們的教材必修一中有這樣一個問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報元;
方案二:第一天回報元,以后每天比前一天多回報元;
方案三:第一天回報元,以后每天的回報比前一天翻一番.
記三種方案第天的回報分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個數(shù)列的通項公式;
(2)小王準備做一個為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求當在處的切線的斜率最小時,的解析式;
(2)在(1)的條件下,是否總存在實數(shù)m,使得對任意的,總存在,使得成立?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知在極坐標系中,點,,是線段的中點,以極點為原點,極軸為軸的正半軸,并在兩坐標系中取相同的長度單位,建立平面直角坐標系,曲線的參數(shù)方程是(為參數(shù)).
(1)求點的直角坐標,并求曲線的普通方程;
(2)設(shè)直線過點交曲線于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,a∈R.
(1)若x=2是函數(shù)f(x)的極值點,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若x>1時,f(x)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.
(1)若的面積,求a+c值;
(2)若2cosC(+)=c2,求角C.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com