【題目】設(shè)點為圓上的動點,軸上的投影為,動點滿足,動點的軌跡為.

(Ⅰ)求的方程;

(Ⅱ)設(shè)的左頂點為若直線與曲線交于兩點,不是左右頂點),且滿足,求證直線恒過定點并求出該定點的坐標.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)設(shè)Px,y),Mx0y0),由已知條件建立二者之間的關(guān)系,利用坐標轉(zhuǎn)移法可得軌跡方程;

(2)由向量條件結(jié)合矩形對角線相等可得DA,DB垂直,斜率之積為﹣1,再聯(lián)立直線與橢圓方程,得根與系數(shù)關(guān)系,逐步求解得證.

(Ⅰ)設(shè)點,,由題意可知

,∴

,

又點在圓

代入得

即軌跡的方程為

(Ⅱ)由(Ⅰ)可知,設(shè),

聯(lián)立

,

解得,且均滿足即

,的方程為,直線恒過與已知矛盾;

的方程為,直線恒過

所以,直線過定點,定點坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某年級位同學參加語文和數(shù)學兩門課的考試,每門課的考分從0100. 假如考試的結(jié)果沒有兩位同學的成績是完全相同的(即至少有一門課的成績不同). 另外,“甲比乙好”是指同學甲的語文和數(shù)學的考分均分別高于同學乙的語文和數(shù)學的考分. 試問:當最小為何值時,必存在三位同學(設(shè)為甲、乙、丙),有甲比乙好,乙比丙好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過橢圓W:的左焦點作直線交橢圓于兩點,其中 ,另一條過的直線交橢圓于兩點(不與重合),且點不與點重合.軸的垂線分別交直線,.

(Ⅰ)求點坐標和直線的方程;

(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.

(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統(tǒng)計,得到如下統(tǒng)計表:

月銷售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnxx2+ax,g(x)=exe,其中a0.

(1)若a1,證明:f(x)≤0;

(2)用max{m,n}表示mn中的較大值,設(shè)函數(shù)h(x)=max{f(x),g(x)},討論函數(shù)h(x)在(0,+∞)上的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),下列結(jié)論中正確的是( )

A.函數(shù)時,取得極小值

B.對于,恒成立

C.,則

D.,對于恒成立,則的最大值為,的最小值為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù),),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)已知直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點的直線與橢圓交于兩點,過軸且與橢圓交于另一點, 為橢圓的右焦點,求證:三點在同一條直線上.

查看答案和解析>>

同步練習冊答案