(本題滿分14分)數(shù)列的前項(xiàng)和為,等差數(shù)列滿足,
(I)分別求數(shù)列,的通項(xiàng)公式;
(II)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

(I),(II)

解析試題分析:(I)由----①得----②,
②得,;                            ……3分
,                                             ……4分
.                                                                    ……5分
;                             ……7分
(II),                                          ……8分
對(duì)恒成立, 對(duì)恒成立,          ……10分
,,
當(dāng)時(shí),,當(dāng)時(shí),,                                  ……12分
,.                                                  ……14分
考點(diǎn):本小題主要考查等比數(shù)列的判定和通項(xiàng)公式的求解、等差數(shù)列的計(jì)算以及等比數(shù)列前n項(xiàng)和的求解,
和恒成立問題的求解,考查了學(xué)生的推理能力和轉(zhuǎn)化能力以及運(yùn)算求解能力.
點(diǎn)評(píng):用定義判定等差數(shù)列或等比數(shù)列時(shí),一定要看清楚是否漏掉了第一項(xiàng),如果漏掉了,則需要單獨(dú)驗(yàn)
證,這是特別容易忽略的地方,一定要仔細(xì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和(n為正整數(shù))。
(Ⅰ)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,試比較的大小,并予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列依次成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式
(Ⅱ)若求數(shù)列的前項(xiàng)和;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知曲線,從上的點(diǎn)軸的垂線,交于點(diǎn),再從點(diǎn)軸的垂線,交于點(diǎn)
設(shè).。
求數(shù)列的通項(xiàng)公式;
,數(shù)列的前項(xiàng)和為,試比較的大小
,數(shù)列的前項(xiàng)和為,試證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)數(shù)列的前項(xiàng)和為,且;數(shù)列為等差數(shù)列,且,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,為數(shù)列的前項(xiàng)和. 求:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知數(shù)列的前n項(xiàng)和為,且
(Ⅰ)求數(shù)列通項(xiàng)公式;
(Ⅱ)若,,求證數(shù)列是等比數(shù)列,并求數(shù)
的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,試證明:
(1)當(dāng)時(shí),有;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知數(shù)列滿足
(Ⅰ)證明:數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)以及前n項(xiàng)和;
(Ⅲ)如果對(duì)任意的正整數(shù)都有的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

過點(diǎn)且方向向量為的直線交橢圓兩點(diǎn),記原點(diǎn)為,面積為,則_______

查看答案和解析>>

同步練習(xí)冊(cè)答案