如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1
(1)證明:AB=AC
(2)設(shè)二面角A-BD-C為60°,求B1C與平面BCD所成的角的大小
(1)詳見(jiàn)解析,(2)
解析試題分析:(1)證明AB=AC,往往轉(zhuǎn)化為證明對(duì)應(yīng)線(xiàn)段垂直,即證邊上中線(xiàn)垂直.取BC中點(diǎn)F,連接EF,AF,易得ADEF為平行四邊形,從而AF//DE. 又DE⊥平面,可得AF⊥BC.(2)求直線(xiàn)與平面所成角的關(guān)鍵在于找面的垂線(xiàn).而面的垂線(xiàn),往往從面面垂直的性質(zhì)定理中取到.觀察圖形可知,BC⊥平面DEF,從而平面BCD⊥平面DEF.過(guò)作兩平面的交線(xiàn)的垂線(xiàn)就是平面BCD的垂線(xiàn).因?yàn)楸绢}三維垂直關(guān)系已知,所以也可利用空間向量進(jìn)行求解.已知條件的二面角與所求線(xiàn)面角有一個(gè)相同的平面,這也簡(jiǎn)化了運(yùn)算量.
試題解析:
解法一:(1)取BC中點(diǎn)F,連接EF,則EF,從而EFDA。
連接AF,則ADEF為平行四邊形,從而AF//DE。又DE⊥平面,故AF⊥平面,從而AF⊥BC,即AF為BC的垂直平分線(xiàn),所以AB=AC。 5分
(2)作AG⊥BD,垂足為G,連接CG。由三垂線(xiàn)定理知CG⊥BD,故∠AGC為二面角A-BD-C的平面角。由題設(shè)知,∠AGC=600..
設(shè)AC=2,則AG=。又AB=2,BC=,故AF=。
由得2AD=,解得AD=。 9分
故AD=AF。又AD⊥AF,所以四邊形ADEF為正方形。
因?yàn)锽C⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
連接AE、DF,設(shè)AE∩DF=H,則EH⊥DF,EH⊥平面BCD。
連接CH,則∠ECH為與平面BCD所成的角。.
因ADEF為正方形,AD=,故EH=1,又EC==2,
所以∠ECH=300,即與平面BCD所成的角為300. 12分
解法二:
(1)以A為坐標(biāo)原點(diǎn),射線(xiàn)AB為x軸的正半軸,建立如圖所示的直角坐標(biāo)系A(chǔ)—xyz。
設(shè)B(1,0,0),C(0,b,0),D(0,0,c),則(1,0,2c),E(,,c).
于是=(,,0),=(-1,b,0).由DE⊥平面知DE⊥BC, =0,求得b=1,所以 AB=AC。 5分
(2)設(shè)平面BCD的法向量則
又=(-1,1, 0),
=(-1,0,c),故
令x=1,則y=1,z=,=(1,1,).
又平面的法向量=(0,1,0)
由二面角為60°知,=60°,
故 °,求得 9分
于是 ,
,
°
所以與平面所成的角為30° 12分
考點(diǎn):線(xiàn)面垂直、面面垂直的判定與性質(zhì)定理
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,平面,,且,點(diǎn)在上.
(1)求證:;
(2)若二面角的大小為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,幾何體中,為邊長(zhǎng)為的正方形,為直角梯形,,,,,.
(1)求異面直線(xiàn)和所成角的大;
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在Rt中,, D、E分別是上的點(diǎn),且,將沿折起到的位置,使,如圖2.
(1)求證:平面平面;
(2)若,求與平面所成角的余弦值;
(3)當(dāng)點(diǎn)在何處時(shí),的長(zhǎng)度最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證:AG平面BDE;
(2)求:二面角GDEB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.
(1)求證:BE⊥平面PCD;
(2)求二面角A一PD-B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直角梯形中,,點(diǎn)分別是的中點(diǎn),點(diǎn)在上,沿將梯形翻折,使平面平面.
(1)當(dāng)最小時(shí),求證:;
(2)當(dāng)時(shí),求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,ABCD是塊矩形硬紙板,其中AB=2AD,AD=,E為DC的中點(diǎn),將它沿AE折成直二面角D-AE-B.
(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱錐SABC中,底面是邊長(zhǎng)為2的正三角形,點(diǎn)S在底面ABC上的射影O恰是AC的中點(diǎn),側(cè)棱SB和底面成45°角.
(1)若D為側(cè)棱SB上一點(diǎn),當(dāng)為何值時(shí),CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com