如圖,ABCD是塊矩形硬紙板,其中AB=2AD,AD=,E為DC的中點,將它沿AE折成直二面角D-AE-B.
(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1
(1)證明:AB=AC
(2)設(shè)二面角A-BD-C為60°,求B1C與平面BCD所成的角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,A,D分別是矩形A1BCD1上的點,AB=2AA1=2AD=2,DC=2DD1,把四邊形A1ADD1沿AD折疊,使其與平面ABCD垂直,如圖2所示,連接A1B,D1C得幾何體ABA1DCD1.
(1)當點E在棱AB上移動時,證明:D1E⊥A1D;
(2)在棱AB上是否存在點E,使二面角D1ECD的平面角為?若存在,求出AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABCA1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=,M是CC1的中點.
(1)求證:A1B⊥AM;
(2)求二面角BAMC的平面角的大小..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在中,,,點在邊上,設(shè),過點作交于,作交于。沿將翻折成使平面平面;沿將翻折成使平面平面.
(1)求證:平面;
(2)是否存在正實數(shù),使得二面角的大小為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐中,底面為菱形,平面,,分別是的中點.
(1)證明:平面;
(2)取,若為上的動點,與平面所成最大角的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求平面A1DB與平面DBB1夾角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com