如圖,已知四棱錐中,底面為菱形,平面,分別是的中點(diǎn).

(1)證明:平面;
(2)取,若上的動點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。

(1)詳見解析;(2)

解析試題分析:(1)用線面垂直證,用等腰三角形中線即為高線證,根據(jù)線面垂直得判定定理即可得證。(2)由(1)知平面,則與平面所成的角。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4a/2/1i8pe4.png" style="vertical-align:middle;" />為定值,所以最短即最短時(shí)角的正弦值最大。故此時(shí)。故此可推導(dǎo)出的值,過,則平面,過,連接,則為二面角的平面角。也可采用空間向量法。
試題解析:解:方法一:(1)證明:由四邊形為菱形,,可得為正三角形,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b6/6/10vvr2.png" style="vertical-align:middle;" />為的中點(diǎn),
所以                                1分
,因此                       2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/b/cgss5.png" style="vertical-align:middle;" />平面,平面,
所以                         3分
平面平面,
所以平面  .              5分
(2)上任意一點(diǎn),連接由(1)知平面,則與平面所成的角                    6分
中,,
所以當(dāng)最短時(shí),即當(dāng)時(shí),最大 .              7分
此時(shí),     因此

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(1)求證:BE⊥平面PCD;
(2)求二面角A一PD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長方體AC1中,AB=BC=2,,點(diǎn)E、F分別是面A1C1、面BC1的中心.

(1)求證:BE//平面D1AC;
(2)求證:AF⊥BE;
(3)求異面直線AF與BD所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCDA1B1C1D1中,側(cè)棱A1A⊥底面ABCD,ABDC,ABADADCD=1,AA1AB=2,E為棱AA1的中點(diǎn).

(1)證明B1C1CE;
(2)求二面角B1CEC1的正弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,ABCD是塊矩形硬紙板,其中AB=2AD,ADEDC的中點(diǎn),將它沿AE折成直二面角D-AE-B.

(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD為正方形,為等腰直角三角形,,且

(1)證明:平面平面
(2)求直線EC與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,ABCD,AB=4,BCCD=2,AA1=2,EE1,F分別是棱ADAA1,AB的中點(diǎn).

(1)證明:直線EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,中點(diǎn).

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,邊長為的等邊△所在的平面垂直于矩形所在的平面, ,的中點(diǎn).

(1)證明:;
(2)求二面角的大。

查看答案和解析>>

同步練習(xí)冊答案